

Cardbox: macros and programming.

Cardbox: macros and programming

Martin Kochanski
and the Cardbox team

C a r d b o x S o f t w a r e L i m i t e d

First published in 2004 by Cardbox Software Limited.

Copyright © 2004 Martin Kochanski.

The moral right of the author has been asserted.

ISBN: 0-9548226-1-7

A catalogue record for this book is available from the British Library.

“Cardbox” and the Cardbox logo are registered trademarks of Cardbox Software
Limited.

An effort has been made to ensure that all terms mentioned in the text that are
known to have been claimed as trademarks have been capitalised or designated
accordingly. However, nothing that appears in the text is to be taken as an assertion
concerning the existence or validity of any trademark.

The author and publisher have taken care in the preparation of this book but make
no warranty concerning the completeness or accuracy of the information it contains
and they accept no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of
this book or any of the software that may accompany it.

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical,
photocopying or otherwise, without the prior permission of the publisher. Printed in
the United Kingdom.

Cardbox Software Limited
Scriventon House
Speldhurst
Kent TN3 0TU
England

 Contents v

Preface.. xi
The history of Cardbox programming.. xii

Part One: Macros
What is a macro?.. 3

Adding intelligence to macros..3
Macro facilities in Cardbox.. 4
Recording and saving macros .. 5

Recording ..5
Inserting special actions ..5
Saving a recorded macro ..6
Pausing or cancelling a recording ...6

Playing macros ... 7
Pausing and stopping macros ...7
Keystrokes, buttons, menu items ..7
Playing macros on startup ...8

Safety, trust, security ... 9
Safety levels ..9
Setting up safety levels..10
Warning: anti-virus software ..10

Managing macros ... 11
Managing folders ...12

Attaching macros to keystrokes... 13
The properties of a keyboard shortcut...13

Attaching macros to buttons... 15
The layout of the toolbar..16
The properties of a toolbar button ...16

Putting macros into the Special menu 17
The layout of the Special menu ...18
The properties of a menu item...18

Part Two: Intelligent macros
Tailoring a recorded macro ... 21

Example: date selection ..21
Example: tax calculation..22
Example: processing a selection of records..23

 vi Contents

Part Three: Using VBScript
Data types.. 27

Numbers ..27
Strings..28
Dates..31
Arrays...32

Conversions .. 33
Numbers and strings..33
Dates and strings...35

Objects... 36
Creating objects...36
Methods and properties...36
Collections ...37

Variables.. 38
Variable names..38
Storing object references in a variable ..40
Scrap variables ..40

Flow of control .. 41
Halt...41
For / Next ...41
For Each / Next..42
Do While / Loop ...43
Do / Loop While ...44
If / Then / Else / End If ...44
If / Then / Else..45
Select Case / Case / End Case...45
Sub / End Sub..45
Function / End Function...47
Variable names in subroutines and functions..48

User interaction .. 49
MsgBox..49
InputBox...50

Style and readability... 51
Indentation ...51
Comments ...51
Long statements ..52
Short statements..52
Constants...52
An important statement you should always use....................................53

 Contents vii

Error handling ... 54
Useful tools for development .. 55

Books and other sources of information..55
Microsoft Script Debugger ...56
Displaying information ...56

Part Four: Introduction to objects
Why use objects? ... 59

What ordinary macros do ..59
Some examples using the Record object..60

The Cardbox object model .. 62
The Application object ... 62

Example: copying text to the Clipboard...62
Example: closing Cardbox...63

The Windows object ... 63
Example: opening a database ...63

The Window object ... 63
Making selections ..64

The Records object .. 64
Adding or removing records ..65
Making selections ..65
Example: making a single selection ..65
Example: multiple selections ...66

The Record object .. 67
How editing works..67

The Fields object .. 68
The Field object .. 68

Using the Text property ...69
Indexed words and the TextFormat property ..70

The Images object .. 73
The Image object .. 74

Example: importing an image from a file ...74

 viii Contents

The Databases object... 74
The Database object... 75

Example: automatic backup ..75
Other Cardbox object types .. 76

Part Five: Objects outside Cardbox
FileSystemObject.. 79

Opening and reading a file ..79
Creating and writing a file ..80

Sending faxes ... 82
WinFax Pro ..82
Microsoft Fax Services ..84

Sending emails ... 86
Controlling Microsoft Office .. 86

Part Six: Using other languages
Getting a Cardbox object... 89

Navigating through Cardbox..89
Visual Basic... 91
VBA in Microsoft Office ... 91
VBScript in Windows.. 92
VBScript in web pages... 92
VBScript in Active Server Pages... 93
Other programming languages ... 93

Part Seven: Examples and strategies
Index of examples... 97
Some quick actions.. 98
Field manipulation while editing ... 99

Intelligent record duplication..99
Automatic calculations...99

 Contents ix

Building macros that use objects 100
Changing an existing macro to use objects...100
Using a second database as a lookup table..102
Using a second database as a thesaurus ...103

Advanced techniques .. 104
Using temporary fields...104
The “Needs Change” flag ..105
Making lookup faster..106

Part Eight: The Cardbox object model
Built-in methods and properties 111
The Applications object ... 113
The Application object ... 113
The Windows object ... 115
The Window object ... 116
The Records object .. 121
The Record object .. 122
The Fields object .. 124
The Field object .. 125
The Images object .. 126
The Image object .. 127
The Databases object... 128
The Database object... 128
The FieldDefinitions object.. 130
The FieldDefinition object.. 130
The Connection object... 131
Index of methods and properties...................................... 132

 Preface xi

Preface
Macros let you automate Cardbox. At their simplest, they record your actions so that
you can play them back later; but the same mechanisms that let you do this will also
let you program Cardbox in increasingly sophisticated ways. Cardbox macros can
control many other programs in your Windows system, which makes it easy to do
things such as send emails or faxes. On the other hand, if you are familiar with
programming something like Microsoft Office then you can use Office macros to
drive Cardbox and thus integrate Cardbox into your Office workflows.

Most people will only need to read a small part of this book. This is true of most
computer books but it’s especially true of this one, so here is a quick summary of
what you can expect:

Part One tells you how to record macros and play them back. You will learn how to
attach macros to keystrokes, toolbar buttons, and menu items.

Part Two gives some examples of how you can add intelligence to your macros,
with simple calculations or just by inserting the date into a search command (asking
your diary database “what do I have to do today?”). If you’re not interested in
expanding your macros like this, you can stop reading at this point.

Part Three is a summary of VBScript, the programming language in which Cardbox
macros are written. This is a long chapter (over 30 pages) and it’s very dense, so
you may find it best to skim through it on a first reading and then use it as a
reference source when reading the examples that we give in the rest of the book.
Even though it’s long and detailed, it’s still only a summary: to take your study of
VBScript further, we give a list of suggested books on page 55.

Part Four introduces you to Cardbox objects. These bypass the normal Cardbox
menu commands and screen display, so that you can perform searches and access
records and fields faster and more directly.

Part Five describes some of the other objects that Cardbox macros can access: to
read and write files, to send faxes and emails, and to drive Microsoft Word and other
programs.

Part Six gives annotated examples of Cardbox macros that use objects. We explain
each one in detail so that you can use the same principles in your own macros.

Part Seven looks at Cardbox from the outside: it describes how programs written in
Visual Basic, VBA (the macro language used by Microsoft Office) and other
languages can connect to Cardbox, control it, and use it to retrieve and update data.

Finally, Part Eight is a comprehensive reference list of every Cardbox object with all
its methods and properties.

 xii Preface

The history of Cardbox programming
Cardbox users have always been enthusiasts and they have never been shy about
asking us for the features they want. We appreciate this because it helps us to
make Cardbox better.

In 1988, though, we were worried. Some people were asking us to add simple
arithmetic to Cardbox-Plus, but we saw that to add arithmetic uniformly and
consistently would change the product out of all recognition and make it more
complex for everyone, simply to benefit the few users who wanted the feature; and
yet we could see that those who wanted arithmetic (and other extra features) had a
point. The dilemma was resolved when one of us invented coprogramming.

Co-programming (pedants will insist on the hyphen) was very simple. While
Cardbox-Plus was still running, the user would start another program. That other
program would “type” keystrokes into Cardbox-Plus and would be able to “read” the
Cardbox-Plus screen. The stroke of genius was that this would not require any
special new programming interface: Cardbox-Plus simply insinuated itself into the
MSDOS operating system so that a program that “printed” to one specially named
file would effectively be typing into Cardbox-Plus, and if it “read” from another
specially named file it would receive the contents of the Cardbox–Plus screen
display. Any programming language can read and write files, so any programming
language could be used to program Cardbox-Plus.

We were amazed by the success of this simple concept. Soon all manner of
unexpected uses for Cardbox-Plus surfaced: a macro-processing coprogram was
written; one enterprising Norwegian created a whole invoicing and stock control
system in Cardbox-Plus; and to this day we use some of our own Basic coprograms
to run our company accounts: there has never been any need to change them.

With the arrival of Windows this simple, universal interface was no longer possible:
even “reading the screen” made little sense once screens were made of pixels rather
than characters. At last, in 1992, Microsoft released OLE 2.0, a raft of technologies
of which one, OLE Automation (its name has changed since then) allowed one
program to drive another and extract data from it.

The initial releases of OLE Automation were unreliable and dreadfully slow, but with
time and the arrival of 32-bit versions of Windows, the speed and quality have both
become very good. All high-level languages and many applications now support
Automation and although the promised abundance of scripting languages never
materialised, VBScript has become a solid and reliable language with many powerful
features. In Cardbox 3.0, we have discarded the proprietary macro language that
we used in previous versions, and Cardbox macros are now written in VBScript. As
you will see, the result goes far beyond the mere recording and playing back of
commands, and we look forward to being amazed once again at the sophisticated
things that our users achieve when they program Cardbox.

Part One
Macros

What macros are; macro facilities in different versions

of Cardbox; recording macros; playing macros;

managing macros; keystrokes, buttons, and menu items.

 What is a macro? 3

What is a macro?
A macro is a sequence of Cardbox commands that you can execute with a single
action. We call this “playing” the macro.

• If you use a particular set of commands very often, a macro can save you time
because you can play it in one single action.

• If you have a very specific set of commands that you use rarely (such as a
monthly mailing) then storing them as a macro can save you a lot of effort in
trying to remember exactly how you did things last time.

There are many ways of playing macros:

• The Play button on the toolbar, and the menu command Tools > Play.
• A keystroke of your choice.
• Toolbar buttons that you design yourself.
• Pushbuttons that you add to a format design.
• Items that you add to the Special menu.
• Macros that start automatically when you open Cardbox.

There is no limit to the number of macros you can have, and you can organise them
in groups so that you can find them easily.

Adding intelligence to macros
Internally, macros are mini-programs written in Microsoft’s VBScript programming
language. When you tell Cardbox to record your actions and turn them into a
macro, Cardbox actually creates a series of commands in VBScript.

This fact is interesting because it means that you can add intelligence to your
macros. You can make simple changes – for example, you could record a search
command and then modify it so that it always searched records marked with today’s
date – or you can write elaborate macros in VBScript using loops, conditional
actions, calculations, and all the other features of the programming language.

VBScript can connect to and communicate with anything that supports the ActiveX
or OLE Automation standard, and this includes all the programs in Microsoft Office
as well as many of the built-in features of Windows. So you could write a Cardbox
macro that takes a selection of records representing business contacts, formats a
standard letter to each of them, and tells Windows to send each of those standard
letters as a fax.

Tools > Play
F5

 4

Using other programming languages with Cardbox
Any scripting or programming language that supports Automation or ActiveX can be
used to drive Cardbox, using the same methods that VBScript macros use. One
particularly interesting example is VBA (“Visual Basic for Applications”), which is
used by Microsoft Office as its macro language. Just as VBScript macros in
Cardbox can send commands to programs outside Cardbox, so VBA macros in (for
example) Word or Excel can send commands to programs outside Microsoft Office,
and so they can send commands to Cardbox as well. If you’re familiar with writing
macros in Microsoft Office, it is not difficult to extending them to communicate with
Cardbox.

Macro facilities in Cardbox

Professional Edition
The Professional Edition can record, edit and manage macros, and the rest of this
chapter tells you how to do this.

Client and Home Editions
The Client and Home Editions of Cardbox don’t have facilities for recording, editing,
or managing macros, but they can play them. This means that someone who uses
the Professional Edition to set up a database can then make it available to people
without the Professional Edition, and all the macros will still work.

 Recording and saving macros 5

Recording and saving macros

Recording
The simplest way of creating a macro is to record it, and the simplest way of starting
to record a macro is to press the Record button. It will start flashing to show that
your actions are being recorded.

When you start recording a macro, the Record button starts to flash and the
Recording button bar appears: this gives you easy access to the commands that
control the recording process.

The same commands that are listed in the button bar can also be reached by
pressing the flashing Record button or by opening the Tools > Recording menu.

While you are recording a macro, every Cardbox command that you use will be
stored in the macro. There are very few commands that can’t be recorded, and
Cardbox will disable those so that you can’t use them accidentally while recording.

Inserting special actions
While you are recording a macro, you can insert special actions into it that affect the
way the macro behaves when it’s played back.

Message (Popup) displays a message and waits for the user to acknowledge it
before continuing with the macro. This action can also give the user the chance
to cancel the macro.

Status Bar Message displays a message on the status bar and continues with the
macro. The message remains until another Status Bar Message action replaces
it with something else.

Pause With Message works like Message (Popup) but allows the user to enter
Cardbox commands before continuing with the macro. For example, you could
use this action to give the user the opportunity of selecting records before they
are formatted and printed. If you specify a message, Cardbox will display it
along with Continue and Stop buttons; if you don’t, no message will appear but
the Pause button in the toolbar will flash to show that the macro is paused.

Comment In Macro Script has no effect on the way the macro works, but the
comment is stored in the text of the macro. This can be a useful marker if you
are planning to edit the macro by hand later on.

Tools > Record

The button bar floats on
top of Cardbox: if it covers

up something important,
you can drag it out of the

way with the mouse.

Help Point 555 describes
all the options associated

with these actions and
explains what you can
use each of them for.

 > Insert

 6

Saving a recorded macro
When you have finished recording a macro, press the Save button. Cardbox will
show you the commands you have recorded and ask you for a description of the
macro. When you’ve put in a description, press Save, and the Save Macro box will
appear, asking you what name you want to give to the macro and where you want to
store it.

Where macros are stored
There are four places where you can put your macros, and your choice depends on
what the macros do and when you want them to be accessible.

Database macros are stored with the database and they aren’t visible when you’re
in any other database. If your macro contains commands that make sense only
in the database you’re currently in, make it a database macro.

Related Databases macros refer to a group of databases, not just one database.
They are quite an advanced feature: see Help Point 571 for an explanation.

Workspace macros are associated with your current workspace and aren’t visible
when you use a different workspace.

General macros are visible whenever you use this copy of Cardbox.

To select a location, click on it and then type the name of the macro in the Name
box. If you want to see what macros are already stored in a location, double-click on
it and it will expand.

If you have a lot of macros, you can subdivide the standard locations into folders: to
see the folders in a location, double-click on the location name; to select the folder
that you want to save a macro into, click on the folder name in the list.

Pausing or cancelling a recording
If you change your mind about recording a macro, or find that you’ve entered the
wrong commands, you can cancel the recording.

Sometimes you may want to pause a recording for a moment: during a pause, you
can enter Cardbox commands but they won’t be recorded. To resume recording,
press the Pause button again.

 > Save

 > Cancel

 > Pause

 “Managing Macros”
(p.11) tells you how to

create and manage
folders.

 Playing macros 7

Playing macros
The simplest way of playing a macro is to press the Play button. Cardbox will show
you a list of all the available macros and you can pick the one you want. The macro
list is organised as two pages, each of which gives you a different view of the
macros.

The Play page
This shows you all the available macros in a single list. To find out more about a
macro, click on it and Cardbox will tell you its location and description: this is why it’s
worth giving your macros good descriptions when you record and save them.

To play a macro, click on it and press Play; or just double-click on it.

If you want to see the text of a macro to make quite sure it is the one you want,
right-click on it and select View from the pop-up menu.

The Manage page
The Manage page is meant for general macro management but you can also use it
to select macros and play them. Unlike the Play page, the Manage page divides
your macros into separate lists according to their location.

Pausing and stopping macros
To pause a macro while it’s playing, press the Pause button. You can then look at
the screen and even enter Cardbox commands before pressing Pause again to
continue the macro.

To stop a macro, press the Stop button on the toolbar, or press the red cross that
appears on the status bar while a macro is playing.

Keystrokes, buttons, menu items
If you are going to be using a particular macro a lot, it is cumbersome to have to use
Tools > Play and pick it from a list every time. You can configure Cardbox so that it
can play a macro in a single action:

Keystrokes – you can tell Cardbox to play a macro whenever you press a certain
key or combination of keys.

Buttons – you can add buttons to the Cardbox toolbar that activate macros when
pressed. You can also design buttons into your record formats.

Tools > Play
F5

See “Managing Macros”
on page 11.

See page 13.

See page 15.

 8

Menu items – you can define menu items that play macros: these appear as part of
the Special menu in the Cardbox menu bar.

Playing macros on startup
You can configure Cardbox to play a macro automatically when it starts. This can
apply to a single workspace or to all workspaces.

Here are a couple of uses for startup macros:

The macro can make a standard initial selection. The sample “What must I do
today?” macro (page 55) is a good example of a macro that could usefully be
played automatically when a workspace is opened: if you ever don’t want to start
with the selection it suggests, a simple Search > Undo will get you back to
viewing the whole database.

You can dedicate a workspace to a single task, such as automatically backing up
a collection of databases (see page 75 for a sample macro). The macro could
even close Cardbox afterwards so that everything was fully automated.

You can start with an empty workspace and use the startup macro to open a
number of databases within it. We ourselves prefer to leave databases open
from one session to the next, but startup macros are a legitimate alternative if
you can’t or don’t want to do this.

This is not an exhaustive list and you may well find other uses for startup macros.

If you have a startup macro but don’t want it to play on a particular occasion, just
hold down the Shift key as you start Cardbox, and keep holding it down until
Cardbox has finished opening. This is particularly useful if you need to adjust the
contents of a workspace without the macro interfering in what you are doing.

See page 17.

Tools > Options » Startup

 Safety, trust, security 9

Safety, trust, security
A macro is essentially a small program written in VBScript, and as such it is capable
of performing almost any action. This means that a malicious person could write a
macro that copies your data to another database, or overwrites your files, or does
something else that you wouldn’t want it to do. Cardbox has features to protect you
from malicious macros that are stored in remote databases.

Macros that run without restriction
General and workspace macros reside on your computer in a location that you

choose. Cardbox imposes no restrictions on these macros because it assumes
that you are responsible for the macros that are stored on your own computer.

In a local database – that is, in a database that you open using File > Open » My
Computer – Cardbox imposes no restrictions on database or Related Databases
macros, again because they live on your computer and you are responsible for
them.

Macros in remote databases
Databases residing on a server are a different story. They may be databases
residing on your corporate Cardbox server or they may be databases residing
somewhere out on the Web. How much you trust them will depend very much on
what you know about the database owner or creator.

Safety levels
Cardbox lets you define safety levels for each database you open using the Server
tab. The safety level tells Cardbox how much you trust the database and controls
what a macro originating from that database is allowed to do.

Untrusted –Macros loaded from an Untrusted database cannot create objects
unless those objects are installed on your computer and marked as “Safe for
Scripting”: in particular, the built-in Windows object that gives VBScript the ability
to handle files (FileSystemObject) is not considered Safe for Scripting, which
means that untrusted macros will not be able to open or create files on your
computer. In addition, untrusted macros cannot access other Cardbox
databases (except databases located in the same directory as the one that was
the source of the macro): this is to prevent the possibility of data theft. Finally,
untrusted macros cannot run programs or open external files.

Completely Untrusted – If a database is marked as Completely Untrusted then
macros loaded from it can't be run at all. We have included this setting in case

For more about
safety levels, see

Help Point 526.

Untrusted is the default
setting when you are

connected to a server that
is not on your own

computer.

 10

Microsoft’s “Safe for Scripting” mechanism ever turns out to have serious
security leaks.

Trusted – Like Untrusted, except that macros loaded from this database are allowed
to view or modify any open database, not just the database they have come
from. They still can’t create unsafe objects, open or create files, or run programs
or open external files.

Highly Trusted – Like Trusted, but there is no restriction on the objects that these
macros can create. This also implies access to FileSystemObject, which means
that files can be created, deleted, read and written. Macros still can’t run
programs or open external files.

Completely Trusted – Macros loaded from this database have no restrictions

Setting up safety levels
In File > Open » Server, you can set the safety level for a particular database by
picking an entry from the Safety Level list below the list of databases. You can also
the set the default safety level for a whole server, or for servers in general, by
pressing the Server Safety button just above the server name.

Warning: anti-virus software
To protect users of insecure email programs from the consequences of the emails
they open, anti-virus software often contains a feature to restrict or block the
execution of scripts, including macros written in VBScript. Older versions of anti-
virus software sometimes tried to prevent scripts from being executed by any
program at all, whether or not there was any worm or virus potential, and so ended
up interfering with the playing of macros by Cardbox. If your anti-virus software
causes this problem then you will have to reconfigure it so that it permits macros to
be played: you should consult the documentation or contact the vendor for advice on
how to do this. Alternatively, upgrade to a more recent version, since we have found
that modern anti-virus programs seem to have a clearer idea of what kinds of
scripting need to be blocked and do not block all scripts and macros indiscriminately.

Completely Trusted is the
default setting for

databases stored on
your own computer.

 Managing macros 11

Managing macros
You can edit, rename and delete macros, and create macro folders, using Tools >
Manage Macros. A useful shortcut to this command is to press the Play button and
then select the Manage page in the window that pops up.

The macros are grouped into folders corresponding to their location (you can see a
list of locations on page 6). The display works just like the folder view and Details
view in Windows Explorer: you can open a folder by clicking on the + sign next to it
or by double-clicking on its name.

To edit a macro, double-click on it; or select it and press Edit.

To delete a macro, select it and press Delete.

To rename a macro, right-click on it and pick Rename from the pop-up menu.

To create a brand new macro, press New Macro; or right-click on a folder and pick
New Macro from the pop-up menu. You’ll be taken into the macro editor, where
you can type in the text of your macro.

Tools > Manage Macros

At the bottom of the
window you can see the

description of the
currently selected macro.

 12

To play a macro, double-click on it while holding down the Ctrl key; or right-click on
it and then select Play from the pop-up menu.

To create a macro that is similar to an existing one, you have two choices. The
traditional Windows method is to edit the macro and press Save As when you’ve
finished editing (Cardbox will then ask you for a new name to give to the macro).
The better method is to select the macro and press Duplicate, which will create a
new macro that has exactly the same text as the existing one. This is safer
because you can’t find yourself overwriting the old macro by accident.

Managing folders
You can group your macros into folders to make your macro lists look tidier so that
you can find things in them more easily. You can arrange the folders to reflect the
different circumstances in which you might use the macros or the different people
who might be using them.

One particularly good tip is to segregate macros that are played automatically (by
keystrokes, buttons, etc) into a separate folder so that they don’t confuse you when
you enter the Play command manually and are looking for a macro to play.

To create a folder, right-click on the folder which is to contain the new folder and
pick New Folder from the pop-up menu. The new folder will appear, with a blank
name. Before you do anything else, type the name that you want the folder to
have.

To rename a folder, right-click on it and pick Rename from the pop-up menu.

To delete a folder, select it and press Delete. Deleting a folder deletes all the
macros and folders that it contains.

 Attaching macros to keystrokes 13

Attaching macros to keystrokes
If you use a macro often, it will save time if you can play it by pressing a single key
or combination of keys: for example, F7 or Ctrl + Shift + T.

Tools > Keyboard lets you control all of Cardbox’s keyboard shortcuts. You can
reassign existing shortcuts, add new shortcuts to standard Cardbox commands, or
create shortcuts that play macros.

The properties of a keyboard shortcut

Context
The context of a shortcut says what mode Cardbox should be in for the shortcut to
be available: viewing records, editing records, or with no database open. The
reason for specifying the context is that many commands are available in some
modes but not others. You can also use this feature to make a key do different
things depending on whether or not you are editing a record, by creating two
shortcuts: one for Viewing Records and one for Editing Records.

Tools > Keyboard

For detailed instructions,
open this command and

then press the F1 key.

 14

Scope
Some macros will only make sense with one particular database; others may be
usable wherever you are in Cardbox. The scope of a shortcut tells Cardbox the
circumstances in which the shortcut should be active.

This Computer – whenever you use Cardbox on this computer.

Workspace – only when you are using this workspace.

Database – only when you are using this database.

Format – only when you are using this particular format.

To create a shortcut with a given scope, click on the tab for that scope. The list of
shortcuts includes every shortcut there is, but you can identify shortcuts belonging to
the current scope because they are shown in black while the others are shown in
grey.

• The Format tab is only available when you are editing a format.
• The Database tab is only available when you are editing the native format of the

database.

It’s possible to have shortcuts for the same key in more than one scope, and in that
case the more specific scope takes precedence over the more general one: for
example, if you have a Format shortcut and a This Computer shortcut, the Format
shortcut will win.

Keystroke
In principle, most keys are usable for shortcuts – letters, numbers, symbols, and
function keys – and you can modify each key with any combination of Ctrl, Alt, or
Shift. There are some restrictions, though, because some keystrokes are too
important to have their function changed. For example: if you assigned a macro to
Alt + F then you’d have difficulty opening the File menu; if you assigned a macro to
the letter A in the Editing Records context then you’d have difficulty typing the word
“CAT”. To avoid this sort of trouble, Cardbox prevents you from using these
keystrokes.

You are allowed to assign
macros to letters in the

Viewing Records context,
because letters on their

own don’t mean anything
to Cardbox when you are

viewing records.

 Attaching macros to buttons 15

Attaching macros to buttons
You can extend the Cardbox toolbar by adding new buttons that play macros or
execute Cardbox commands. You can also add buttons to the record format itself:
for details of how this works, see “Pushbuttons” in the Format Design section of the
main Cardbox Book.

Tools > Toolbar lets you control the Cardbox toolbar. You can rearrange buttons,
delete buttons, or add new buttons.

The toolbar looks different when you are editing records and when you are viewing
records. To deal with this, make sure you’re in the right mode before you use Tools
> Toolbar. If you want to control the toolbar that’s used when editing records, make
sure you’re editing a record before you start.

Tools > Toolbar

For detailed instructions
open this command and

then press the F1 key.

 16

The layout of the toolbar
The toolbar list shows its buttons in the order in which they will appear in the toolbar:
to move a button, highlight it in the list and press the up or down arrows that you’ll
see just below the list.

The toolbar can also contain separators, which create a small gap between one
group of buttons and the next. You can create separators and move them around
just like buttons.

The standard Cardbox toolbar has one row of buttons, but you can make toolbars
with two rows: to do this, insert a separator and turn on its New Line property.

The properties of a toolbar button

Scope
The Scope property of a toolbar button is the same as the Scope property of a
keyboard shortcut: see page 14 for details.

• You can only edit the Format scope when you are editing a format.
• You can only edit the Database scope when you are editing the native format of

the database.

Image
The button image controls what the button looks like. You can give the button a
solid colour or you can use one of the built-in Cardbox toolbar button designs.

You can also use any drawing program, such as Windows Paint, to create an image
and copy it to the Clipboard. Once you’ve done this, click where it says “Click to
change the button image” In Tools > Toolbar, and pick Paste from the pop-up menu.

Help text
The help text of a toolbar button is the text that pops up if you hold the mouse over
the button for a few moments: you can use it to give the user a quick idea of what
the button is for.

Cardbox also uses the help text if the window is too narrow to hold the whole of the
toolbar – either because you’ve put very many buttons into the toolbar or because
the user has made the Cardbox window very narrow. Cardbox turns the surplus
buttons into a menu that pops up if you click the right-hand edge of the toolbar: the
button images become menu item images and the help text becomes the text of
each menu item. You can see an example on the left.

The required image size
is 16 × 16 pixels.

 Putting macros into the Special menu 17

Putting macros into the Special menu
You can make macros easily accessible by adding them as menu entries to the
Special menu. The Special menu comes between Tools and Window on the menu
bar, but you’ll only see it if it has items in it.

Tools > Special Menu lets you control the Special menu. You can add, edit or delete
menu items, and organise them into submenus.

The Special menu looks different when you are editing records and when you are
viewing records. To modify the menu that’s used when you are editing records, start
editing a record before you use Tools > Special Menu.

Tools > Special Menu

 18

The layout of the Special menu
Menu items will appear in the Special menu in the same order as they do in the
Tools > Special Menu list. To move a menu item in the list, highlight it and press the
up or down arrows that you’ll see just below the list.

The Special menu can also contain separators: when you use the menu, these will
appear as thin horizontal lines separating groups of menu items.

You can incorporate submenus into the Special menu if you like, to make the menu
look simpler and to keep related menu items together. To do this, press the Add
Submenu button: start and end markers will appear, and any menu item that you
insert between those markers will be part of the submenu.

The properties of a menu item

Scope
The Scope property of a menu item is the same as the Scope property of a
keyboard shortcut: see page 14 for details.

• You can only edit the Format scope when you are editing a format.
• You can only edit the Database scope when you are editing the native format of

the database.

Image
Menu items can optionally have a small image next to them. You set up this image
in the same way as for toolbar buttons: see page 16 for details.

Item text
This is the text that will appear in the menu.

Windows lets you underline one letter in the name of a menu item. That letter will
then act as a keyboard shortcut. To underline a letter, type an ampersand “&” just
before it in the item text.

For example, if you have an item text of Weekly &Mailing then this will appear
in the menu as “Weekly Mailing”, and the user can activate it with Alt + P, M
(because Alt + P is the shortcut for the Special menu).

Part Two
Intelligent macros

Tailoring recorded macros to your needs.

 Tailoring a recorded macro 21

Tailoring a recorded macro
The basic macro mechanism built in to Cardbox lets you record your actions as a
macro and repeat those actions by playing the macro. Many people never feel the
need to go further than this, but it only scratches the surface of what you can do.

Internally, macros are mini-programs written in Microsoft’s Visual Basic for Scripting
(VBScript) programming language. When you tell Cardbox to record your actions
and turn them into a macro, Cardbox actually creates a series of commands in
VBScript. This means that you have all the facilities of VBScript at your disposal if
you need them. Your macro doesn’t have to confine itself to blindly repeating a
sequence of commands.

One way of adding intelligence to a macro is to record it and then make changes to
it by editing the VBScript code directly. This section shows some simple examples of
what you can do by this means. Don’t worry about the technical details, but try to
get a feel for the idea of what macros can do once a little programming has been
added.

Example: date selection
Suppose that you have a database that has a “Next Contact” or “Next Action” field
with a date in it, and you want a macro that will select the records that need action
today.

Turn on the macro recorder, perform the selection command, then view and edit the
macro. What Cardbox has recorded will look something like this:

ActiveWindow.Select "NP","2004.1111"

You can see that the date you entered during recording has been made part of the
macro. This means that if you run it tomorrow the macro will do exactly the same
search as it is doing today – which is not the point. What you need to do now is
make the selection command use the current date. So edit the macro as follows:

ActiveWindow.Select "NP",Date

Instead of always searching for “2004.1111”, this command uses VBScript’s built-in
Date function (the value of Date is always today’s date).

The date will be recorded
in yyyy.mmdd format

irrespective of the date
format you used when

performing the selection.

 22

For another example, suppose that you want to do the same thing, but for dates up
to and including today, rather than today only. In that case, the command you’d
record would look like this:

ActiveWindow.Select "NP",":2004.1111"

and so VBScript will have to take the date and put a colon in front of it before
passing it to Select:

ActiveWindow.Select "NP",":" & DateToCardbox(Date)

This looks a little more complicated, because VBScript has to convert the date into a
text string before inserting the colon and we have to control that conversion to make
sure that it comes up with a date format that Cardbox can understand. Here, step
by step, is what the macro will do when it is played:

1. Get today’s date (Date).

2. Convert it into Cardbox format (DateToCardbox).

3. Put a colon in front of it (":" &).

4. Pass it to Cardbox as part of a selection command.

Once you’ve got the hang of this, you can construct endless variants. Here, for
example, we’re selecting records with a date within the coming week:

ActiveWindow.Select "NP",DateToCardbox(Date) & “:” _
 & DateToCardbox(Date+7)

If you run this macro on 28 December 2004, the dates selected will be from 28
December 2004 to 4 January 2005, inclusive.

Example: tax calculation
If you are using Cardbox for your accounts then you will come across VAT (Value
Added Tax). Most ledger applications have three fields, for the net (tax-exclusive)
amount, the tax, and the gross (tax-inclusive) amount: let’s call them NET, VAT, and
TOTAL. This situation provides scope for writing some useful macros.

While entering receipts for cash expenses, you’ll often come across a gross amount
that hasn’t had the tax separated out and you’ll have to get your calculator and work
out NET and VAT for yourself before typing them in. A macro can do all this work for
you.

Let’s start as usual, by doing the operation by hand and letting Cardbox record it.
Start editing a record and put an amount (for example 54.99) into its TOTAL field.
Then turn on the macro recorder, type sample amounts into the NET and VAT fields,
and turn the macro recorder off again. You’ll get something like this:

GoToField "NET"
TypeText "46.80"

For more about
DateToCardbox, what it

does and why it is
needed, see “Dates and

Strings” on page 35.

 Tailoring a recorded macro 23

GoToField "VAT"
TypeText "8.19"

As it stands, this macro would only work if the amount was always 54.99, so we
need to rewrite it and make it perform a calculation. Here is the rewritten version:

amount=Fields("TOTAL")+0
net=Round(amount/1.175,2)
GoToField "NET"
TypeText FormatNumber(net,2,True,False,False)
GoToField "VAT"
TypeText FormatNumber(amount-net,2,True,False,False)

Here is what the macro does, step by step. All the features will be covered in detail
later on in this book.

1. Fields("TOTAL") is a Cardbox function that gets the value in the current
record’s TOTAL field. Adding 0 is a quick way of turning a piece of text into a
number that can be used for calculations.

2. Round() is a VBScript function that rounds a value to a given number of decimal
places (in this case, two).

3. GoToField is a Cardbox command that moves to a named field.

4. FormatNumber() is a VBScript function that converts a number to text. VBScript
can do this automatically but FormatNumber gives more control: in this case, it
ensures that the result always has two decimal places and that it has a leading
zero where necessary (so that 0.8 becomes “0.80” and not “0.8” or even “.8”).

5. TypeText is a Cardbox command that types text into a field.

This all looks quite technical but you only need to set it up once. You can attach the
macro to a single keystroke such as Ctrl + Alt + V. After that, you can enter the
TOTAL field by hand when you are adding a record, and then just press a key to get
the macro to fill in NET and VAT for you. The effort you put into writing the macro
will pay for itself very quickly.

Example: processing a selection of records
If you are using Cardbox directly and want to edit a whole batch of records in the
same way, you select them and use the Edit > Batch > Edit command. This
command isn’t available when you’re recording a macro but you can easily adapt a
macro that edits every record in a selection. This goes beyond what Batch Edit can
do, because the macro can do things that are a lot more sophisticated than simply
repeating keystrokes.

Let’s go back to the tax example above. Suppose that instead of doing the tax
calculation while entering a record, you want to enter all the records first, then select

“1.175” is because at the
time of writing the rate of
VAT in the UK is 17½%.
For a full explanation of
how this macro works,

see Help Point 755,

Batch Edit effectively
works as an “instant

macro” and this would
interfere with the standard
macro mechanism, which

is why it isn’t allowed
when recording macros.

 24

the ones that need the calculation and process them in a batch. What you do is take
our original example and add some lines to the top and bottom:

For pos=1 to RecordCount
GoToRecord pos
EditRecord

 amount=Fields("TOTAL")+0
 net=Round(amount/1.175,2)
 GoToField "NET"
 TypeText FormatNumber(net,2,True,False,False)
 GoToField "VAT"
 TypeText FormatNumber(amount-net,2,True,False,False)

SaveRecord
Next

Here’s what is going on.

1. RecordCount is a built-in Cardbox function that gives the number of records in
the current selection.

2. The For / Next loop performs the commands inside it repeatedly, for pos=1,
pos=2 and so on, up to pos=RecordCount.

3. GoToRecord moves Cardbox to the given record.

4. EditRecord starts to edit the record.

5. Now the original macro takes over and does the same calculations it did before.

6. SaveRecord saves the record after editing.

7. Next repeats the process as many times as necessary.

Using this process for your own macros
Whenever you have a macro of your own that just processes one record, you can
turn it into one that processes the whole of the current selection. Just add lines to
the top and bottom of it in the way that has been shown in the example.

This macro will work
correctly even if there are
no records in the current
selection: RecordCount

will be 0 and whole For /
Next loop will do nothing.

Part Three
Using VBScript

Useful tools; basic commands; variables; date and

number conversions; objects and object lifetimes.

 Data types 27

This chapter gives you an overview of VBScript but it isn’t a step-by-step tutorial. If
you are familiar with other dialects of Basic, the information here will be quite
enough to get you going. If you aren’t, we recommend reading it in conjunction with
the sample macros in this book. The information here is very dense and you
shouldn’t expect to absorb it all on a first reading.

You may also need to look further afield. Microsoft’s web site has a complete
reference to the language; there are a number of tutorials on the Web: use a search
engine to find them. A number of books on VBScript are also available.

Data types
The data types that VBScript handles are numbers, strings, dates, and objects.
Variables in VBScript don’t have a predefined type: any variable can store any type
of data.

Numbers
The basic numeric operators are the same as in other programming languages:

Addition + 2 + 2 is 4
(but see the warning on
page 28)

Subtraction - 3.14 - 2.78 is 0.36

Multiplication * 37 * 3 is 111

Division / 100 / 8 is 12.5

Parentheses () Calculations inside
parentheses are done
before calculations
outside parentheses, so:

1 + (2 * 3) is 7
(1 + 2) * 3 is 9

Equals = 2=3 is False

Does not equal <> 2<>3 is True

Greater than > 2>3 is False

Greater than or equal >= 2>=3 is False

Less than < 2<3 is True

Less than or equal <= 2<=3 is True

For some suggested
books, see page 55 or

Help Point 750.

 28

WARNING: If you use + to add two fields then you will get unexpected results. If the
field AA contains “2” and the field BB contains “3”, then

Fields("AA") + Fields("BB")

will give you “23”. This is because the field values are strings, and if VBScript sees a
string on each side of the + then it concatenates the two strings. To avoid this, insert
a zero between the two field references:

Fields("AA") + 0 + Fields("BB")

There are also some functions that help to get the results of calculations into the
format you want. Here are the most useful ones

Int(value) The integer part of a
number.

Int(7/3,2) is 2

Fix(value) Similar to Int, but works
differently for negative
numbers.

Round(value,places) Rounds a number up or
down to a given number
of decimal places.

Round(7/3,2) is 2.33

Round(8/3,2) is 2.67

CInt(value) Rounds a number to an
integer.

CInt(2.5) is 2

CInt(2.6) is 3

Strings
A string is a sequence of characters: the minimum length of a string is 0 (this is the
empty string, "") and the maximum length is millions of characters.

To specify a string, just put it in quotation marks.

MsgBox "Hello, world!"

will display

Hello, world!

To include a quotation mark within the string, type it twice:

MsgBox "Welcome to the ""machine"""

will display

Welcome to the "machine"

There is only one useful string operator:

Concatenation & "AB" & "CD" is “ABCD”

For more details of how
these functions work, and

a complete list of
mathematical functions,

see Help Point 756.

+ is a synonym for & but
we don’t recommend that
you use it because it has
a different meaning when

used with numbers.

The revised version works
because if VBScript sees

a number on one side of +
and a string on the other,

it treats + as addition. See
Help Point 766.

 Data types 29

There are functions for manipulating pieces of a string. In the examples shown, we
assume that x represents the string “COOPERATE”:

Left(string,count) The first characters of
the string.

Left(x,4) is “COOP”

Right(string,count) The last characters of
the string.

Right(x,3) is “ATE”

Mid(string,start,length) Characters in the
middle of the string.

Mid(x,3,5) is
“OPERA”

Mid(string,start) Characters starting at
a given point in the
string.

Mid(x,3) is
“OPERATE”

Len(string) The length of the
string.

Len(x) is 9

Instr(string,pattern) The position of a
pattern within the
string.

Instr(x,"ER") is 5

Instr(x,"ET") is 0

Instr(pos,string,pattern)
Instr(pos,string,pattern,mode)

Extra options in Instr let you specify where the
search should start, and whether it should be
case-sensitive or case-blind. See Help Point
757.

There are some built-in constants and functions to help you put together strings that
aren’t easy to type:

vbLf The line feed character.
Cardbox uses this to
separate the lines of a
multi-line field.

vbLf is the same as
Chr(10)

vbCrLf A newline sequence.
This is used to separate
lines in Windows files.

vbCrLf is the same as
Chr(13) & Chr(10)

Chr(code) The character whose
Windows code number is
code.

Chr(68) is “D”

Chr(224) is “à”

ChrW(code) The character whose
Unicode code number is
code.

ChrW(321) is “Ł”

Asc(char), AscW(char) The opposite of Chr and ChrW

 30

There are functions to remove leading and trailing spaces from a string. In the
examples shown, we assume that x represents the string “ XXX ”.

LTrim(string) Removes spaces at the
beginning of the string.

LTrim(x) is “XXX ”

RTrim(string) Removes spaces at the
end of the string.

RTrim(x) is “ XXX”

Trim(string) Removes spaces at the
beginning and end of the
string.

Trim(x) is “XXX”

There are functions to convert a string to upper or lower case:

LCase(string) Converts the string to
lower case.

LCase("Ab") is “ab”

UCase(string) Converts the string to
upper case.

UCase("Ab") is “AB”

String comparison
The standard comparison operators <, =, >, <=, <>, >= have the same meanings that
they do for numbers.

Comparison happens one character at a time. If one string ends before the other,
and they are identical up to that point, the longer string is counted as being greater
than the shorter. For example, "Rat"<"Rate" is True.

Comparison using these operators is case-sensitive. This means that "Rat"="RAT"
is False. In fact, "Rat">"RAT", because lower-case letters are usually greater than
upper-case letters.

To do case-blind comparison, you have two choices. You can use LCase:

LCase("Rat") = LCase("RAT") is True

or you can use StrComp, which returns 0 for equality, -1 if the first string is less than
the second, and 1 if the first string is greater than the second:

StrComp("Rat","RAT",vbTextCompare) is 0

StrComp("Rat","SAT",vbTextCompare) is -1

StrComp("Rate","RAT",vbTextCompare) is 1.

StrComp is said to be
more efficient, but in

general you should prefer
readability to efficiency

when writing macros.

If your macro will be
used on Turkish text,

see Help Point 758.

 Data types 31

Dates
VBScript can handle dates from 1 January 100 to 31 December 9999.

The function Date always returns the current date. Various other functions can be
used to create specific date values: see “Dates and Strings” on page 35.

The following functions are relevant to dates. We’ll assume that x has a date value
of 16 October 1978.

d+n n days after the date d. x+200 is 4 May 1979

d-n n days before the date
d.

x-51 is 26 August 1978

date2-date1 The number of days
from date1 to date2.

x-DateSerial(3,8,1923)
is 20163

DateSerial(d,m,y) The date with day d,
month m, and year y.

Day(date) The day of the month of
date.

Date(x) is 16

Month(date) The month of date. Month(x) is 10

Year(date) The year of date. Year(x) is 1978

Weekday(date) The weekday of date,
with Sunday=1. See
Help Point 759 for more
options.

Weekday(x) is 2

DateAdd("code",n,date) n units of time after date.

“code” Units

"yyyy" Years

"m" Months

"d" Days

DateAdd("m",3,x) is 16
January 1979

DateDiff The difference between
two dates. See Help
Point 759.

 32

Arrays
Arrays in VBScript work as they do in most other dialects of Basic. The statement

Dim arr(3)

creates an array of four values, called arr(0), arr(1), arr(2) and arr(3). The
useful thing about arrays is that the array index can be a variable or a numeric
expression: so arr(ix) will refer to one of the four array elements depending on the
value of ix.

Two VBScript functions, LBound and UBound, give the minimum and maximum
allowable array index. In the example we’ve given, LBound(arr) will be 0 and
RBound(arr) will be 3. In that case the functions are telling you something you
already know because you typed the Dim statement yourself; but this isn’t always
the case. For example, the GetMailExchangers method provided by Cardbox
creates and returns an array value and you’ll want to use LBound and UBound to find
out how many elements the array contains.

Splitting and joining strings
The built-in VBScript function Split splits a string into an array of shorter pieces.
You give it the string to be split, and the characters that are being used to separate
the pieces. For example:

slices=Split("Alpha,Bravo,Charlie",",")

creates an array with the following attributes:

slices(0)="Alpha"
slices(1)="Bravo"
slices(2)="Charlie"
LBound(slices)=0
UBound(slices)=2

The useful thing about this is that if you receive some data in the form of a string,
you can split the string into an array and then loop through the array elements one at
a time, processing each one in whatever way you want. Here are some examples:

• A multi-line Cardbox field is a string with line feed characters (vbLf) used to
separate each line from the next; so Split(Field("ADDR"),vbLf) will be an
array in which each line of the field called ADDR is a separate element. You
may, for example, use this fact if you are using a macro to output data in some
specialised format.

• Cardbox’s ListIndex method returns a list of matching index terms as a single
string separated by newline (vbCrLf) markers. So if you want to process each
term individually, store the result of ListIndex in a string (let’s call it ixlist)

If the array index is
outside the allowable

range, VBScript will report
an error.

 Conversions 33

and then use Split(ixlist,vbCrLf) to split it into an array of separate index
terms.

• Windows text files consist of lines separated by newline markers. One
technique for processing a file is to read it all into a single string and then use
Split to split it into lines.

The opposite of Split is Join. Join joins an array together into a single string. To
take one example: given the slices array that we created using Split, using
Join(slices," ") will give you the string "Alpha Bravo Charlie". Combining
Join with Split gives you a quick way of changing lists from one format to another.

Conversions

Numbers and strings
The string "123" is a string and the number 123 is a number: they look similar to us
but to the computer they are two different things. VBScript covers up the differences
quite efficiently: if you use a string where a number is expected (for example, in an
arithmetical calculation) it will convert the string to a number; if you use a number in
a context where a string is required, it will convert the number to a string.

For example:

"27" + 0

has the numerical value 27: this is a quick and easy way of forcing a numerical value
when you need one. And

MsgBox "Total = " & 199.90

will display the message

Total = 199.9

There is an additional function that gives you more control over the conversion of
numbers to strings: this is FormatNumber.

FormatNumber(value,places,lzero,paren,group) formats value to have exactly places
decimal places.

• If lzero is True, then if value is less than 1, FormatNumber puts a zero before the
decimal point.

• If value is negative, FormatNumber puts a minus sign in front of it if paren is
False or parentheses round it if paren is True.

• If group is True, FormatNumber groups the digits (eg. 2,000 rather than 2000).

If you use a string in a
numerical context and it

doesn’t represent a valid
number then VBScript will

report an error.

 34

Here are a few examples to make it clearer:

• FormatNumber(123,2,True,False,False) is “123.00”.
• FormatNumber(123.456,2,True,False,False) is “123.46”.
• FormatNumber(-0.5,3,False,False,False) is “-.500”.
• FormatNumber(0.1,3,True,False,False) is “0.100”.

Regional settings
There is one qualification to all of the above description: the description is true only if
the Regional Settings of your computer (set in the Windows Control Panel) indicate
that the decimal separator in your part of the world is a decimal point. If you are
somewhere where the decimal separator is a comma (and Windows knows this) all
the conversions shown above will use commas instead of decimal points. If this is
what you want, there is nothing to worry about. But Cardbox has to be consistent
across the world and so, when it indexes, always assumes that the decimal
separator is a decimal point. Thus if you use VBScript functions to convert numbers
into strings and then pass them to Cardbox, you may run into trouble: run in
Belgium, for example, your macro will convert 3.14 to "3,14", which Cardbox won’t
understand.

There are two cases where you won’t have difficulty.

• If you pass a number into a Cardbox search command without converting it into
a string first, Cardbox will do the conversion for you and always use a decimal
point so that everything works.

• If you assign a number directly to a Cardbox field value – for example,
Fields("TAX")=144.62 – or pass a number directly to the TypeText method,
Cardbox will also perform the conversion for itself.

To handle other cases (for example, where VBScript has to build a string and then
pass it to Cardbox) there are two functions built into Cardbox’s macro system:

NumberToCardbox(value) Converts the
number to a
string, always
using a decimal
point as the
separator.

NumberToCardbox(3.14) is
“3.14”

NumberFromCardbox(value) Converts the
string to a
number, always
using a decimal
point as the
separator.

NumberFromCardbox("3.14")
is 3.14

In selection commands,
Cardbox will reject “3,14”

as a search string.
When indexing data, it will

interpret “3,14” as
the number 314.

 Conversions 35

Dates and strings
VBScript provides built-in functions to convert between dates and strings:

DateSerial("string") Converts a string
to a date.

FormatDateTime(date) Converts a date
to a string.

Regional settings
Unfortunately there are even more regional settings for dates than there are for
numbers, and many of the settings don’t fit Cardbox’s pattern of day/month/year,
month-day-year, or year.month.day

• If you pass a date into a Cardbox search command without converting it into a
string first, Cardbox will do the conversion for you.

• If you assign a date directly to a Cardbox field value or pass a number directly to
the TypeText method, Cardbox will also perform the conversion for itself, using
the day/month/year format.

• If you assign a number directly to a Cardbox field value – for example,
Fields("TAX")=144.62 – then Cardbox will also perform the conversion for
itself.

For all other cases, there are two conversion functions:

DateToCardbox(date) Converts the date to a string, always using a
slash as the date separator.

DateToCardbox(date,"sep") Converts the date to a string, using the
separator "sep" ("/", "-", or ".").

DateToCardbox(date,"pattern") Converts the date to a string in virtually any
format: see Help Point 760.

DateFromCardbox("string") Converts the string to a date. The string may
be in any of Cardbox’s standard date formats.

Two-digit years
Cardbox is quite comfortable with two-digit years as long as you don’t mix them with
four-digit ones: to Cardbox, 68 means the year 68 and 1968 means the year 1968.

VBScript can’t handle years before 100AD, and it translates a two-digit year into a
year in the 20th or 21st century. Different versions of the Windows system files
make different assumptions about when a two-digit year should be put into the 20th

 36

and when into the 21st century, and it is said that Microsoft’s documentation has at
times been inconsistent and not matched the reality. We strongly recommend that if
you are going to use two-digit year numbers in your system then you should add
1900 or 2000 to them yourself before passing them to any of VBScript’s date
functions. That way you will know exactly what to expect.

Objects
VBScript interacts with other programs by using objects. Objects are abstract
entities that can represent anything outside VBScript. To take some examples:

A File object (created by the FileSystemObject component of Windows) lets you
manipulate a file; a Folder object lets you manipulate a folder.

A Window object (created by Cardbox) lets you send commands to a Cardbox
window, and change things like its caption and position; a Field object gives you
access to the contents of a single field.

A WinFax object (created by Symantec’s WinFax Pro) lets you send commands to
the fax system and check its status.

Splitting the world into objects can seem inconvenient at first but it has the great
advantage that VBScript doesn’t have to understand anything about the programs it
is communicating with: to VBScript, everything is an object.

Creating objects
There are two basic ways of creating objects:

• In VBScript, the CreateObject and GetObject functions can create an object.

• Many objects have commands (“methods”) that allow the creation of sub-objects.
For instance, to get a Folder object for manipulating a Windows folder, you use
CreateObject to create an object of type FileSystemObject and then use that
object’s CreateFolder or GetFolder method to get hold of the Folder object.

Whenever we document an object type in this book we’ll also tell you how to create
an object of that type.

Methods and properties

Methods
A method is a command provided by an object. Often the command will change the
object in some way – for instance, the Select method of Cardbox’s Window object
performs a selection command in a window – but that isn’t essential: some methods
are just a way in which an object provides a service to your macro. Strictly

 Objects 37

speaking, the conversion functions that Cardbox provides (such as
DateFromCardbox, p. 35) work like this: they are actually methods of an invisible
built-in Macro object: the DateFromCardbox method receives a string value from
your macro and returns a Date value to it.

Properties
A property is a fact about an object. For instance, the Text property of the Field
object is the actual text of the field; the Caption property of the Window object is the
window’s caption. Properties can have any type of value (number, string, etc) and
they can be read/write (modifiable by a macro or program) or read-only. To give one
example: the Text property of the Field object is read/write if the record is being
edited and read-only if it isn’t.

Objects from objects
Object methods can return an object as their value: for example, the
FileSystemObject object provided by Windows has a method called GetFile which
creates an object that refers to an existing file. This is the normal way of navigating
through a program’s “object model” and Cardbox uses it a lot. Given a Window
object, you can get a Records object that represents the objects in that window; a
Record object that represents one of those records; and a Field object that
represents one field in that record. You’ll see how this works later in this book, when
we show you some examples.

Collections
Some objects represent collections of other objects. To take an example within
Cardbox: a Records object represents a collection of Record objects – depending on
where you got the Records object from, these might be all the records in the
database, or all tagged records, or all the records in the current selection.

All collection objects have the following standard properties:

Count The number of objects in this collection.

Item(n) The nth object in this collection.

There is a diagram of the
Cardbox object model on
page 58. If you know the

name of a method or
property and want to
know which objects it

applies to, see the
Index of Methods and

Properties on page 132.

 38

Example
Suppose that you have a Records object called recs. Then recs.Count will be a
number telling you how many records there are in recs, and recs.Item(3) will be
a Record object representing the third record in recs. It would be an error to refer to
recs.Item(3) if recs contained fewer than three records.

• In most programming languages (including VBScript) you can say recs(3)
instead of recs.Item(3) and it will mean exactly the same thing.

• In some collections, the index n can be a string as well as a number. For
example, if flds is a Fields object, flds.Item("NAME") or flds("NAME") will
be a Field object representing the field whose name is NAME.

Variables
A variable is something that holds a value. If you say

x = "world"
MsgBox "Hello again, " & x & "!"

then the macro will display

Hello again, world!

You can replace the contents of a variable as often as you like:

number = 2
number = number + 3
MsgBox number

first sets number to 2, then calculates 2+3 and stores the result back into number,
then displays 5 as the result. This example is pretty pointless, but repeatedly adding
numbers to a variable is exactly what you need to do if you are calculating totals.

Variables in VBScript don’t have a fixed type, so you can use a variable to store a
number at one moment and a string a moment later; although it’s usually best for the
readability of your macros if you don’t make a habit of that sort of thing, because it
can make it harder for the reader (who might be you in a few months’ time) to make
out what is going on.

Variable names
A variable name must start with a letter and contain only letters, numeric digits, and
the underline character “_”. You can have variable names more or less as long as
you like: the limit is over 200 letters.

 Variables 39

VBScript ignores case in variable names, so recSelected and RecSelected and
recselected and RECSELECTED are all the same name as far as VBScript is
concerned, but it’s a good idea to establish some sort of convention so that you
don’t confuse yourself. We tend to do the following:

RecSelected capitalisation is used for methods, properties, functions and
subroutines.

RECSELECTED capitalisation is used for values that are constant throughout the
macro: for example, const TAXRATE=0.175. This makes it easy to see where
the tax rate is being used and easy to change it if necessary.

recSelected capitalisation is used for all object references. We use prefixes to
remind ourselves what kind of object the variable ought to contain: things like
win, recs, rec, flds, fld, and so on. We also sometimes use the prefix i for
numbers that indicate position in a list and the prefix n for numbers that indicate
a count of some kind. It’s not compulsory but it helps readability.

A simple uncapitalised name is used when there’s no possibility of confusion. If
there’s only one variable in the macro that holds a Record object, and it’s clear
what Record object is involved, then there’s no harm in just calling the variable
rec on its own

For variables that have numeric or string values, we sometimes use short
uncapitalised names (amount, tax), multi-word names with all words capitalised
except the first, or two-word names with no capitals at all. One-letter names are
reserved for variables that are only used in a restricted context: within a few
adjacent lines of the macro, or within a single loop.

Remember: the primary purpose of any program (and macros are small programs) is
to convey its intention and structure to a future reader. The fact that a program does
something when run is simply a happy side-effect. Use our rules or work out your
own: it doesn’t matter which, but do think of the person who may have to modify,
imitate or debug your macro in the future.

Avoiding keywords
A variable name must not be the same as a VBScript keyword, or VBScript will get
confused. So you can’t have a variable called next or date, because Next is a
VBScript command and Date is a VBScript function. nextRecord or dateOfBirth
are perfectly OK. Similarly, a variable name mustn’t be the same as one of the built-
in methods or properties that Cardbox adds to the macro environment: these are
listed on pages 111 and 132.

 40

Storing object references in a variable
To set the value of a variable, you use =:

nHappyCustomers = nHappyCustomers + 1
name = "Cletus"

but objects are an irritating exception. To set a variable to contain an object
reference, you have to use Set:

Set fso = CreateObject("Scripting.FileSystemObject")

If you don’t use Set, you’ll end up storing a rather nebulous entity called the “default
value” of the object instead of the object reference you were expecting. For some
objects, this is rational: the default value of a Field object is the text of the field; but
most objects don’t have meaningful default values and you’ll get an error if you
forget to use Set.

CreateObject creates an empty object of a specified type. To create an object that
refers (for example) to a Word document file, use GetObject instead. For example:

Set doc = GetObject("C:\Docs\MyLetter.doc")

Scrap variables
Normal variables are part of a macro and as soon as the macro terminates, all its
variables disappear. Some people like to create a set of interrelated macros that
can share data values between them. If you are one of these people then the Scrap
variables are what you need. The variables Scrap(1), Scrap(2),… up to
Scrap(100) are maintained by Cardbox rather than by the macro, so any values
that you give to them will persist for as long as this copy of Cardbox is running.

 Flow of control 41

Flow of control
Unless otherwise specified, VBScript executes a macro by beginning at the
beginning and going on until it reaches the end. All automatically-recorded macros
are of this form. But when you’re adding intelligence you will probably want to add
loops (to process a batch of records) and conditional logic (to do different things in
different cases). Here are the most commonly used constructs for altering the flow
of control.

Halt
This isn’t a VBScript statement but a Cardbox method call; but it’s important enough
to be included here.

Halt on its own terminates the macro.

Halt "message text" terminates the macro and displays a message. Use it, for
example, if there is something wrong and you want to let the user know.

For / Next
For i = 1 To 10
 VBScript statements
 Next

executes the VBScript statements between For and Next once for i=1, once for i=2,
and so on up to i=10.

The starting and ending points don’t have to be fixed numbers: they can be any
numeric expression:

nRecs=RecordCount
For iRec=1 To nRecs
 VBScript statements
 Next

In this case the loop variable is called iRec, and the loop will be executed once for
iRec=1, once for iRec=2, and so on up to iRec=nRecs. If nRecs=0 then this isn’t
an error: VBScript will just skip over the loop.

The use of nRecs is not a piece of gratuitous bureaucracy. VBScript checks “have I
come to the end?” every time it goes through the loop, and since RecordCount is a
built-in Cardbox property, this means communicating repeatedly with Cardbox,
which can slow things down (especially if there are thousands or tens of thousands
of records). In most cases we don’t recommend making a macro more complicated
for the sake of making it faster, but this is one of the exceptions.

If you are used to other
dialects of Basic, you will

expect to say “Next i” or
“Next iRec” rather than

just “Next”. Unfortunately
VBScript only allows a

plain “Next” and it reports
an error if you try to

include a variable name
as well.

 42

• You can make a loop that steps through its values in bigger jumps: for example,
For i=1 To 6 Step 2 would execute the loop statements for i=1, i=3, and
i=5. This isn’t often useful.

• You can make a loop that goes backwards: For i=10 To 0 Step -1 will count
down from 10 to 0, inclusive. This is useful sometimes.

• The loop can itself contain another loop, and that loop can contain yet another
one. The only rule is that you have to close the loops in the opposite order to
their opening – so that the most recently opened loop gets closed first:

For i = 1 To 10
 VBScript statements
 For j = 1 To 6
 VBScript statements
 Next
 VBScript statements
 Next

• If your macro discovers, in the middle of a loop, that it wants to leave the loop, it
can use the statement Exit For. This immediately jumps to just after the Next
statement of the loop it is in.

For Each / Next
This is almost exactly the same as For / Next, but it loops through a collection of
objects. It is best illustrated by an example:

Set recs = ActiveWindow.Records
total = 0
For Each rec In recs
 total = total + rec.Fields("AMT")
 Next

This sets recs to be a Cardbox Records object, which is a collection (p.37) of
Record objects. The effect of For Each is to go through the loop once for each
object in the collection, with rec having a reference to each of the Record objects in
turn. The overall effect of the example is to calculate the total of the AMT field in
every record in the current selection and store it in the variable called total.

This rule applies to all
block statements:

For/Next, Do While/Loop,
If/End If, Sub/End Sub,

and so on. They can all
contain other blocks and

all (except for Sub and
Function) can be nested
inside other blocks; but

you must always close the
most recently opened

block first.

 Flow of control 43

Do While / Loop
This is a simple kind of loop that doesn’t set any variables, just executes repeatedly
until a condition is true:

Do While winfax.IsEntryIDReady(0) <> 1
 Sleep 20
 Loop

This is an extract from a macro for sending faxes using Symantec’s WinFax Pro.
winfax is an object that represents the WinFax program. The macro has just sent a
command to send a fax, and now it has to wait until the object reports that the
program has finished processing the command (if it doesn’t do this, WinFax will get
extremely confused). So the macro repeatedly checks the value returned by
WinFax’s IsEntryIDReady method, and pauses for 1/50 of a second between each
check so as to give WinFax a chance to do some actual work.

• The loop will repeat as long as the Do While condition is satisfied. It will repeat
forever if necessary.

• If the Do While condition isn’t satisfied the first time the statement is reached,
the loop is not executed at all and VBScript goes straight to the statement after
Loop.

• If your macro discovers, in the middle of a loop, that it wants to leave the loop, it
can use the statement Exit Do. This immediately jumps to just after the Loop
statement of the loop it is in.

• The condition after While can be a comparison (see page 37) or a simple
numeric expression, in which case a non-zero value is counted as True and
zero as False.

• Complex conditions can also be built up using the logical operators And, Or, and
Not. The way that VBScript interprets these operators is not very intuitive and
we recommend that you put parentheses round the conditions that you are
joining together. For example, (x=3) Or (x=5) is true if x equals 3 or 5.

While / Wend
This is identical to Do While / Loop but is out of fashion.

Do Until / Loop
This is the opposite of Do While. Instead of looping while a condition is satisfied, it
loops while the condition isn’t satisfied – which is the same thing as looping until the
condition is satisfied, which is how this loop gets its name.

We didn’t invent this code
ourselves but took it from

a VBScript example
provided by Symantec.

When dealing with
external objects, the
manufacturer’s own

documentation is always
the best guide.

 44

Do / Loop While
This is similar to Do While / Loop but there is a subtle difference:

Do
 VBScript statements
 Loop While MsgBox("Try again?",vbYesNo)=vbYes

In this case the While test takes place at the end of the loop rather than at the
beginning, which means that the statements inside the loop will always be executed
at least once. The example shows a loop which will execute some statements, then
ask the user whether he wants to try again, and will repeat the statements as long
as he answers “Yes” each time.

• One example of where this sort of thing is useful is if the body of the loop asks
for a password and then tries to check if it works: if the password does work, the
macro can use Exit Do to leave the loop and stop asking the user whether to
try again.

Do / Loop Until
This is the opposite of Do / Loop While and it loops as long as the Until
condition is false (or, if you prefer, stops looping as soon as the Until condition
becomes true).

If / Then / Else / End If
The general form of a multi-line If statement block is:

If condition Then
 VBScript statements if condition is true
 Else
 VBScript statements if condition is false
 End If

If you’re not interested in what happens if condition is false, you can leave out the
Else part altogether:

If Fields("TYPE")<>"T" Then
 MsgBox "Invalid type"
 Halt
 End If

There is nothing to stop you having If statements inside If statements: in fact, any
kind of block (For, Do, While, Select, If) can be nested inside any other.

 Flow of control 45

If / Then / Else
You can also write an If statement on a single line:

If condition Then VBScript statements Else VBScript statements
In this case End If isn’t needed:

If Fields("TYPE")<>"T" Then MsgBox "Invalid type" : Halt

Note that you can use a colon to put several statements together on a line to take
advantage of this abbreviated form of If. Don’t overdo this: as always, legibility is
the most important thing.

Select Case / Case / End Case
The final conditional construct in VBScript is the most elaborate:

Select Case value
 Case testvalue
 VBScript statements
 Case testvalue,testvalue
 VBScript statements
 Case Else
 VBScript statements
 End Select

(Each Case can have one or more test values, but if there is more than one value
then they need to be separated by commas).

Here is what VBScript does with Select Case:

1. It calculates value and then looks at each Case in turn.

2. It calculates each of the test values given and compares it to value. If they match,
it executes the VBScript statements that follow, up to but not including the next
Case, and skips to just past End Select.

3. Case Else is optional. If it is present, it must be the last case: it will match any
value that didn’t match any of the other Case lines.

Sub / End Sub
Sub / End Sub defines a subroutine: that is, a set of VBScript statements that you
can then call using a single statement. There are thus two parts to the use of a
subroutine: you need to define it, and you need to call it.

You can put the subroutine definition before the code that actually calls the
subroutine, or after it: choose whichever style you find more readable.

 46

Subroutine definition
Sub SubroutineName(param1,param2,…)
 VBScript statements
 End Sub

• You choose the name of the subroutine yourself. The rules are the same as for
variable names (p.38).

• Parameters enable the caller of the subroutine to pass values to it. There can
be any number of parameters (you choose their names too): if there is more than
one then you should separate them with commas. Subroutines without
parameters are also possible: in that case you don’t need the parentheses at all.

• You can use Exit Sub within a subroutine to cause an immediate exit from the
subroutine back to the statement that called it.

Subroutine calls
There are two forms:

SubroutineName arg1,arg2,…

and

Call SubroutineName(arg1,arg2,…)
They do exactly the same thing, so choose whichever looks better to you. Visually,
the first form looks more like a VBScript statement and the second form looks more
like a function call.

• When you call a subroutine, you supply one value (“argument”) for each
parameter that was listed in the subroutine definition. The parameters will be
given the values you supply, and the statements in the subroutine will then be
executed until the end of the subroutine is reached or an Exit Sub statement is
executed. After that, the macro will continue with the statement after your
subroutine call.

• Subroutines can call other subroutines.

Examples
Sub ReportErrorAndHalt(msg)
 MsgBox msg & vbCrLf & "For help, please call extension 43.”
 Halt
 End Sub

This subroutine is designed to report an error message, which is given to it as an
argument. It displays the message together with a contact telephone number that
the user can call for assistance, and then halts the macro. Here are two sample
uses of the subroutine:

 Flow of control 47

ReportErrorAndHalt "No records were selected."
ReportErrorAndHalt "This quarter's report is not yet ready."

Subroutines can also be used to improve legibility. For example, in the following
macro (which loops through an entire selection using For / Next), the subroutine call
clearly separates the business of looping through the records from the actual
processing that is done to each record:

Sub ProcessRecord
 EditRecord
 VBScript statements
 SaveRecord
 End Sub

For i=1 To RecordCount
 GoToRecord i
 ProcessRecord
 Next

Function / End Function
Functions are like subroutines except that they return a value that you can store in a
variable or use in calculations. To return a value from a function, you store the value
into the function name. Here is a very simple example:

Function PlusOne(x)
 PlusOne = x + 1
 End Function

MsgBox PlusOne(18)

will display “19”.

Here is a less trivial function:

Function ZeroIfBlank(str)
 x = Trim(str)
 If x = "" Then ZeroIfBlank = 0 : Exit Function
 ZeroIfBlank = x + 0
 End Function

MsgBox ZeroIfBlank(Fields("VALUE"))

This function is very useful if you are doing numerical work with Cardbox. It converts
a value (typically, the contents of a field) to a number, except that if the value is
blank or contains nothing but spaces, it converts it to zero. (If a string is blank,
VBScript’s own built-in number conversions would report an error if you tried to
convert it to a number).

 48

Variable names in subroutines and functions
Subroutines are to some extent isolated entities as far as variable names are
concerned, but the exact rules are a little abstruse:

1. If you declare a variable inside a subroutine by using the Dim statement, then
that variable is private and is known only inside the subroutine. You can use the
same name elsewhere in the macro if you feel like it, but it won’t refer to that
variable.

2. If you don’t declare the variable inside the subroutine, but it doesn’t get used in
the body of the macro, then it is also private. By “the body of the macro” we
mean the part of the macro text that isn’t inside any subroutine or function.

3. If you don’t declare the variable inside the subroutine, and it does get used in the
body of the macro, then the variable is shared between the subroutine and the
macro, so that if one of them makes a change to the value then the other will see
the changed value.

Here is a rather artificial example:

Sub Pointer
 Dim x
 x=1 : y=2 : z=3
 End Sub
Sub Pug
 MsgBox x : MsgBox y : MsgBox z
 End Sub
x=8 : y=9
Pointer
Pug

• The value of x displayed by Pug will be 8, because the main body of the macro
sets x to 8: the x used by Pointer doesn’t count because it is declared inside
Pointer and so changes made to it by Pointer are invisible outside Pointer.

• The value of y displayed by Pug will be 2, because y is used in the main body of
the macro but not declared in either Pug or Pointer, so that Pug and Pointer
and the body of the macro all refer to the same y.

• The value of z displayed by Pug will be blank, because z isn’t used in the main
body of the macro and so the z in Pug and the z in Pointer are both private and
have nothing to do with each other: z=3 inside Pointer affects Pointer’s z but
not Pug’s.

It is difficult to remember all this and stay sane. The following pair of rules is all you
really need:

1. If you want a variable to be private to a subroutine (which you usually do), use
Dim to declare it inside the macro.

 User interaction 49

2. If you want a variable to be shared among all subroutines, use Dim to declare it
in the body of the macro (a good place would be right at the beginning of the
macro, before any subroutines).

User interaction
VBScript contains two functions for displaying messages and getting information
from the user. These are useful but rudimentary: third-party components exist to
allow VBScript to display more elaborate dialog boxes and a web search should find
some suitable candidates if you need them.

MsgBox
You have already seen simple uses of MsgBox because we have used it as a way of
displaying messages or reporting the result of a calculation. A fuller definition of
MsgBox is:

MsgBox message, options, title
or

x=MsgBox(message,options,title)
Message specifies what will appear in the text of the message. It can be a string or
anything that can be converted to a string. It can include the special vbCrLf code to
split the message into separate lines or paragraphs.

Title is optional. It specifies what will appear in the title bar of the message box. It is
also a string.

Options is optional. It is a combination of values that tell VBScript more about the
message box. You can find a full list in Help Point 761, but the most useful values
are those that specify which buttons should be shown in the message box:

vbOKOnly OK

vbOKCancel OK, Cancel

vbYesNo Yes, No

vbYesNoCancel Yes, No, Cancel

vbAbortRetryIgnore Abort, Retry, Ignore

vbRetryCancel Retry, Cancel

If you use the subroutine form of MsgBox, you won’t know what button the user
pressed; if you use the function form, the value returned is vbOK, vbCancel, vbYes,
vbNo, vbAbort, vbRetry or vbIgnore.

For an example, see the
Do / Loop Until illustration

on page 44.

 50

InputBox
The InputBox function displays a message asking the user for input, and returns the
value that was entered.

x=InputBox(message,title,default)
Default is optional. If it is specified, the input box will appear with this value already
fill in, so that the user can enter it just by clicking OK.

The input box has an OK button and a Cancel button. The return value of InputBox
is the string the user typed if OK was pressed, or a zero-length string ("") if Cancel
was pressed. This means that there is no way to distinguish between pressing
Cancel and pressing OK with an empty box: both will result in "".

It is often useful to have a function that wraps InputBox with a few tests:

Function InputBoxOrHalt(prompt,dft)
 x=InputBox(prompt,"Cardbox Macro",dft)
 If x="" Then Halt
 InputBoxOrHalt=Trim(x)
 End Function

You call this function giving it a prompt and a default value. It displays a message
using InputBox and checks the result to see if it’s a zero-length string: if it is, it
terminates the entire macro – this gives the user an opportunity to terminate the
macro whenever he is asked for input. As a further convenience, this function also
uses VBScript’s Trim function to remove any leading or trailing spaces from what
the user has typed.

 Style and readability 51

Style and readability
We have already lectured you about making your macros readable, but we make no
apologies for doing so again, because it’s important. Here is a collection of
suggestions for making macros readable and easily understood.

Indentation
When you are dealing with block-structured statements (such as For / Next or Sub /
End Sub), use indentation to make it obvious to the reader where a block begins and
ends. Our rules are:

In For loops, indent the statements inside the For by one space relative to the For,
and indent the Next that closes the For in the same way:

For Each rec In recs
 total = total + rec.Fields("AMT")
 Next

• Apply the same rule to Do, While, Sub, and Function.

In If blocks, indent the Else (if present) and the End If by one space relative to
the If, and indent the VBScript statements inside the block by two spaces relative to
the If (by one space relative to the Else and End If).

• Apply the same rule to Select blocks.

Break any of the above rules if it makes the macro more legible.

Comments
In VBScript, anything after an apostrophe is ignored:

Const VATRATE = 0.175

and

Const VATRATE = 0.175 ‘ UK rate current in 2004

are identical; but the second form may be more meaningful to a human reader.

You can also have comments on lines by themselves:

' Macro written by QHF on 20-Oct-2011.
' Note:
' The code dealing with multi-year renewals has been written
' but not yet tested. Test it before use.

See page 38.

The traditional Basic
comment statement,

REM, is also present in
VBScript and you can use

it as well if you like.

 52

Blank lines
Blank lines cost nothing. They do nothing except make your macro easier to read.
Use them.

Long statements
If you have a statement that is too long to read conveniently without scrolling, you
can split it across more than one line. Simply end every line apart from the last with
the underline character “_”:

Records.WriteToFile cbxWriteFormatEXT, _
 "C:\Universalis\Programming\NEWS.EXT", _
 "ID,HEADING,NAME,**"

You can’t split a character string across lines, but here is an alternative technique:

Records.WriteToFile cbxWriteFormatEXT, _
 "C:\Universalis\Programming\source.ext", _
 "ID,NAME,RANK,DATE,USE,COMMON,ABBREVIATION," _
 & " FV_PS1,FV_PS2,FV_PS3,MAT_PS1,MAT_PS2,MAT_PS3”

Short statements
If you have several short statements then you can put them all on the same line by
using colons:

total=0 : totalSelected=0 : previousCode=-1

Apart from its use in If statements, this is a dubious technique and we mostly avoid
it because of the risk of illegibility. You can use it, though, if the separate statements
all form part of a single action as far as a human reader is concerned.

Constants
The statement

Const RETRIES = 3 ‘ Number of retries for passwords.

gives RETRIES a value that can never be changed by the macro. It is useful
because “RETRIES” is more noticeable than “3” when you are reading a macro, and
it also clearly says what this particular use of the number 3 is for, which will save
trouble and mistakes if the number of retries ever has to be altered.

We don’t use constants in this way very much ourselves, but you will notice in many
of our sample macros statements like

Const EMAIL_FIELD = "EMAIL" ‘ Name of the email field

Make sure you don’t put a
space after the underline

or VBScript won’t see it as
a continuation marker.

This separates the long
string into two shorter

ones joined by “&”, and
then splits the resulting

statement across
several lines.

 Style and readability 53

This statement makes it much easier for you to adapt our sample to a database
where the email address field has a different name.

Built-in constants
You will have noticed us using values such as cbxWriteFormatEXT or vbYesNo in
our examples. These constants are built in to VBScript (the cbx constants are built
in to the macro environment by Cardbox) and they are good because

MsgBox("Try again?",vbYesNo)=vbYes

Is easier to read and easier to write than

MsgBox("Try again?",4)=6

An important statement you should always use
An important statement that you should always use is:

Option Explicit

If you put it at the very start of your macro then you will protect yourself from obscure
errors caused by all sorts of typing mistakes.

Without Option Explicit, VBScript is informal: you don’t need to do anything
special when you want to use a variable, you just use it. With Option Explicit,
VBScript is pedantic and you need to declare every single variable (with the Dim
statement) before you use it. For example, here are the first few lines of a macro:

For pos=1 to RecordCount
GoToRecord pos
EditRecord
amount=Fields("TOTAL")+0
net=Round(amount/1.175,2)

Without Option Explicit, this macro will work. With Option Explicit, VBScript
will complain that you have used variables without declaring them, and you will have
to put some extra lines at the beginning of the macro:

Option Explicit
Dim pos
Dim amount,net

For pos=1 to RecordCount
GoToRecord pos
EditRecord
amount=Fields("TOTAL")+0
net=Round(amount/1.175,2)

If you are using a different
language from VBScript to

drive Cardbox,
you can still use

Cardbox’s predefined
constants:

see Help Point 762.

 54

So why do we recommend all this extra bureaucracy? Look at this macro:

For pos=1 to RecordCount
GoToRecord pos
EditRecord
amount=Fields(TOTAL)+0
net=Round(amonut/1.175,2)

It looks the same as the one we showed you before, but it isn’t. We’ve forgotten to
put quotation marks round TOTAL, and we have typed amonut instead of amount.
Without Option Explicit, VBScript will assume that we are simply using new
variables called TOTAL and amonut, and will give them both the value zero. The
resulting erratic behaviour of a macro can be very difficult to pin down.

With Option Explicit, VBScript will see that you haven’t mentioned variables
called TOTAL and amonut in a Dim statement, and it will complain and refuse to run
the macro: it will even tell you which line the error occurs in. You will then be able to
correct your typing mistakes and run a macro that has some chance of success.

We don’t use Option Explicit in the examples we give you, because it makes
them longer without making them any more informative; but in real life Option
Explicit is a piece of insurance that is well worth considering.

Error handling
VBScript’s limited error handling is one of the reasons why it isn’t very good for
writing large and complex programs: if you want to do this then you should switch to
another language – even Visual Basic is better at handling errors.

Let’s look again at this macro line:

amount=Fields("TOTAL")+0

What if the TOTAL field is blank, or contains something that isn’t a number? In that
case VBScript will report an error and terminate the macro.

Often this is acceptable behaviour, especially when you’ve got a macro that is
working within a single record. You press the button, you see an error message pop
up, and you realise that you have forgotten to type something, or have typed
something wrong. But displaying an obscure VBScript error message is not the best
way to alert a user to the fact that somewhere in his 1,000-record selection there is
one record that was badly formatted.

VBScript has just one statement that deals with error handling:

On Error Resume Next

This makes VBScript ignore the error and carry on to the next statement. The only
way you will be able to tell that the error happened at all is to check the built-in
VBScript value Err.Number – if it is non-zero, an error has occurred.

 Useful tools for development 55

This behaviour is not a good idea. We have lost count of the number of times that
users have asked us for support, saying “I don’t know what’s going wrong with my
macro: I stopped it displaying error messages by adding On Error Resume Next
but it’s still not giving me the right answer”. On Error Resume Next doesn’t
correct errors, it only hides them. Don’t use it.

The only exception that we consider acceptable is this:

• If you have a small function where only one or two lines can possibly cause an
error, you can use On Error Resume Next inside that function, and then check
explicitly for errors and decide what to do about them. Here’s an example:

Function BulletproofNumericValue(str)
 On Error Resume Next
 BulletproofNumericValue=Trim(str)+0
 If Err.Number<>0 Then BulletproofNumericValue=0
 End Function

This function converts a string representing a number (such as “123”) into a number,
and converts anything else at all (“”, or “TWELVE”) into zero.

Useful tools for development

Books and other sources of information
This book gives a rapid summary of VBScript in connection with Cardbox. For
comprehensive coverage of every VBScript object and function, or for a more
graded tutorial, consider the following books, which some of the early testers of
Cardbox 3.0 have found useful:

VBScript in a Nutshell: a desktop quick reference - Childs, Lomax, Petrusha
(O’Reilly). An excellent book, giving full detail of every command, statement, and
function, and describing all the variations of VBScript in Active Server Pages,
Outlook, Internet Explorer, and even the Windows Scripting Host. ISBN 0-59600-
488-5.

Windows 2000 Scripting Guide (Microsoft Press). Based in part on Microsoft’s
online reference material. “Comprehensive and covers VBScript in a logical
sequence.” ISBN 0-7356-1867-4.

Learn VBScript in a Weekend - Ford (Premier Press). “It is aimed at beginner to
intermediate. While it is not comprehensive it covers most of the essentials and
gives simple examples, which are relatively easy to follow, even though they tend to
be web based.” ISBN 1-93184-170-5.

The On Error Resume
Next inside this function
doesn’t contaminate the

rest of your macro,
because as soon as
VBScript leaves the

function it returns
error handling to its

previous state.

 56

Microsoft Script Debugger
You can download a tool called the Microsoft Script Debugger from Microsoft’s web
site, and so we have included an option in Tools > Options » Macros to start the
debugger if an error is detected in a script. Our experience with this debugger has
not been encouraging and we have found it better to leave this option turned off.

Displaying information
Especially in the early stages of developing a brand new macro, you may need to
see what is going on, to make sure it is working correctly or to investigate why it
isn’t. There are two ways of displaying useful information:

MsgBox
MsgBox displays a message on the screen. You can pass virtually anything to
MsgBox and it will turn it into a string and display it. For example:

MsgBox Fields("TITLE")

will display the contents of the field called TITLE in the current record, and

MsgBox "Date is " & DateToCardbox(Date+30,"-")

will display “Date 1-24-2005” if you run it on 25 December 2004.

MsgBox is particularly useful for experimenting with functions that you haven’t used
before, to check that you understand them before you start relying on them.

WriteLog
WriteLog writes a line to Cardbox’s log file. The advantage of WriteLog is that you
will be able to see in a single file all the messages your macro has generated.

If you’re puzzled by a macro’s behaviour then insert a lot of WriteLog commands
into it, to create a detailed history of exactly what it was doing and what the values of
all the variables were. Be generous in the amount of logging information written out:
large log files are not a problem for Cardbox or for Windows.

If you have inserted WriteLog or MsgBox commands and have sorted out your
problems, you can comment them out by putting an apostrophe in front of them. For
example:

'WriteLog "Record " & pos & " title = " & Fields("TITLE")

This line now does nothing at all, because it’s nothing but a comment; but if a
problem occurs then you can quickly convert it back to a working WriteLog
command just by removing the apostrophe at the beginning of the line.

For a full specification of
MsgBox, see page 37.

To find out the location of
your log file, use

Help > About Cardbox.

When an error occurs,
Cardbox reports what the
error is and its location in

the macro, so that you
can find it easily.

Part Four
Introduction to objects

The Cardbox object model; converting a macro to use

objects.

Applications: p.113
Application: p.113
Databases: p.128
Database: p.128

Fields: p.124
Field: p.125

FieldDefinitions: p.130
FieldDefinition: p.130

HistoryWindow: p.114
Images: p.126
Image: p.127

Records: p.121
Record: p.122

SharedPicture: p.127
Windows: p.115
Window: p.116

 Why use objects? 59

Why use objects?

What ordinary macros do
If you record a macro and play it back, it sends a sequence of commands to
Cardbox just as you would, except that it types faster. If you enhance the macro by
using VBScript, you add to its intelligence but it is basically still doing the same thing
as far as Cardbox is concerned: entering commands.

The Cardbox object model lets your macro interact with Cardbox at a deeper level
than the normal commands. This can be faster and more direct. To take one
example: if you wanted to copy the contents of one field to another, you would have
to go to the first field, highlight it all, copy it to the Clipboard, go to the second field,
highlight it all, and paste the replacement text from the Clipboard. If you turn on the
macro recorder while you’re doing this it will record your actions and when you play
the macro it will reproduce them faithfully. But the operation is still quite
complicated, whereas by using the Field object in Cardbox, you can copy one field
to another in one action.

Here are some of the inconveniences of ordinary macros, and how using objects
can help:

• An ordinary macro can only touch what is under its nose. To put something into
a field, it has to move to that field. To edit a record, it has to move to a record.
To select records, it has to make a selection in a window. This destroys some
information about where you are in Cardbox. If it moves to a different field, you
are no longer in the same field. If it moves to a different record, you are no
longer on the same record. If it has to make selections of its own, it will probably
forget any selections that you have made.

• For the same reason, an ordinary macro also has to put a lot of effort into
moving to the right place before it can do something: this housekeeping makes it
less easy to see what the macro is meant to be doing.

• When Cardbox gets commands from a macro, it responds to them just as if you
had typed them. This means that the toolbar changes when a record is edited;
the screen display changes when the macro moves from one record to another;
and if the macro switches between one window and another then the whole
screen has to change. This is visually distracting but, far more important, it
wastes a lot of time. If you are going to process hundreds of records then an
ordinary macro will be very slow.

 60

With objects, on the other hand, a macro can refer to any field or any record,
whether it’s the currently active one or not. It can edit a record without having to
issue an Edit command, so that Cardbox doesn’t have to change its toolbars, its
status bar or anything else. You can think of the macro as interacting with Cardbox
“underneath” the normal user interface.

Some examples using the Record object
To get an idea of the difference, here is the tax calculation macro that we created
earlier:

amount=Fields("TOTAL")+0
net=Round(amount/1.175,2)
GoToField "NET"
TypeText FormatNumber(net,2,True,False,False)
GoToField "VAT"
TypeText FormatNumber(amount-net,2,True,False,False)

This moves to a new field, and types text into it, moves to a new field, and types text
into it. In the end it leaves you in the VAT field irrespective of where you happened
to be when the macro started. (It also, incidentally, has a defect: if the NET or VAT
field isn’t empty to start with, it will type text in front of what is already in the field
instead of replacing it). Here’s an equivalent using the Record object:

Set rec=ActiveWindow.ActiveRecord
amount=rec.Fields("TOTAL")+0
net=Round(amount/1.175,2)
rec.Fields("NET")=FormatNumber(net,2,True,False,False)
rec.Fields("VAT")=FormatNumber(amount-net,2,True,False,False)

The differences look small but they are significant. No commands at all are being
issued to Cardbox as such. Instead, everything happens through a Record object
that represents the currently active record. Your position in the record won’t change:
only the contents of the NET and VAT fields will be different. And as a bonus, it’s
clearer what it is that the macro is meant to do.

Let’s take this example further by looking at the batch version of the tax calculation.
To remind you, here it is:

For pos=1 to RecordCount
GoToRecord pos
EditRecord

 amount=Fields("TOTAL")+0

If your macro makes a
change to a record that’s
visible on the screen, the

screen display will change
to reflect the changes that

have been made.

See page 23.

See page 24.

In a macro,
ActiveWindow.ActiveRecord

can be abbreviated to
ActiveRecord, but we’re using
the longer version so that you

can see more clearly what’s
going on.

 Why use objects? 61

 net=Round(amount/1.175,2)
 GoToField "NET"
 TypeText FormatNumber(net,2,True,False,False)
 GoToField "VAT"
 TypeText FormatNumber(amount-net,2,True,False,False)

SaveRecord
Next

This steps through every record in the current selection – if you play a macro like
this, you’ll see it happening – and it leaves you on the last record, irrespective of
where you may have been when you started playing the macro. So there’s a lot of
screen activity, and at the end of it all your original position is lost.

Here is the version that uses objects:

For Each rec In ActiveWindow.Records
rec.Edit
 amt=rec.Fields("TOTAL")+0
 net=Round(amt/1.175,2)
 rec.Fields("NET")=FormatNumber(net,2,True,False,False)
 rec.Fields("VAT")=FormatNumber(amt-net,2,True,False,False)

rec.Save
Next

Again, there are no real Cardbox commands in this, and the macro uses the Record
and Records objects to do all its work. If you watch this macro, you won’t see
anything happening except at the moment when its processing goes through the
records that are currently on the screen; and even then, all that happens is that the
NET and VAT fields change to reflect the new values they have just been given.
Your current position in the selection won’t be affected, and the whole thing will go
much faster than the previous version.

This macro refers to the state of affairs on the screen: look on the first line, where
ActiveWindow.Records creates a Records object that represents all records in the
current selection. It’s quite common to have this kind of reference at the start of a
macro, but it’s not essential: if you used

For Each rec In ActiveWindow.Database.AllRecords

instead, then the macro would process every record in the whole of the database.

A final example: one Cardbox user has a database of invoices, and because he has
multiple shops, he wants to be able to fill in the shop’s address and telephone
number automatically when he creates an invoice. So he enters a code in one field

In a macro,
ActiveWindow.Records can
be abbreviated to Records,

but we’re using the longer
version so that you can see

more clearly what’s going on.

You can see this macro on
page 102.

 62

of his database, and he has a macro that fills in the other information once he’s done
this. The macro searches a separate Shop Addresses database, finds a record
corresponding to the code he entered, and extracts the address and telephone
number from it. By using objects, the macro can do this without having to switch
windows, move among fields, or anything else: this is faster and more convenient.
The user doesn’t even have to know that the Shop Addresses window exists.

The Cardbox object model
Cardbox makes its internal organisation visible to VBScript (and other programming
languages) as objects of various types. The most important object types are
Window, Records, Record and Field.

Window represents a database window within Cardbox. When you record a macro,
it is mostly composed of a list of commands to be sent to a Window object (the
Window object that represents the currently active window).

Records represents a selection of records. A good thing about Records objects is
that you can use them to perform searches and selections without affecting the
current selection on the screen.

Record represents a record in a database. It can represent any record at all, not
just the one that is currently active.

Field represents the contents of a single field in a record. If you want to retrieve or
change the contents of a field, the Field object is the fastest and most direct way
of doing it.

The Application object
The Application object represents a copy of Cardbox that is currently running. You
can use it to resize or move the Cardbox window and to access the Windows
Clipboard.

Example: copying text to the Clipboard
ClipboardText=Fields("AD")

will take the text of the field named AD in the active record in the active window and
copy it to the Clipboard

See page 113 and
Help Point 721.

You can see a chart of all
Cardbox objects and their
interrelations on page 58.

A detailed description of
all Cardbox objects starts

on page 109.

 The Windows object 63

Example: closing Cardbox
To close Cardbox from a macro, use

Application.Visible=False

Cardbox won’t actually close down until the macro has finished, so you would
usually make this the last command in your macro.

The Windows object
The Windows object is a collection of Window objects representing database
windows within Cardbox. Normally it will represent all the windows open within
Cardbox, but you can also use it to find all the windows that have a specific
database in them.

Example: opening a database
Set win=Windows.OpenFile("C:\MyData\Sample File.fil")

opens the named database and stores a Window object for the newly opened
window in the variable win.

Windows.OpenFile("C:\MyData\Sample File.fil")

simply opens the database without storing any reference to the Window object.
Since the new database window will always be the active one, you can refer to it
with ActiveWindow if you need to.

The Window object
Almost any menu command that you enter into Cardbox is effectively an action
applied to the currently active window, so the Window object has an enormous
number of methods and properties. For this reason the Cardbox macro system
provides a short cut: if you want to use a method or property of the active window’s
Window object, you don’t need to specify an object reference at all: so instead of

ActiveWindow.GoToRecord 10

you can say

GoToRecord 10

OpenFile has a number of
options, which are listed

in Help Point 751; or you
can turn on the macro

recorder, open a
database, and then look

at what gets recorded.

Exception: you have to
say ActiveWindow.Left

and ActiveWindow.Select,
because Left and Select

are keywords built into
Visual Basic.

See page 115 and
Help Point 723.

See page 116 and
Help Point 724.

 64

Getting a Window object
Set win=ActiveWindow

gets the Window object for the currently active window and stores it in win.

Set win=Windows("DIARY")

gets the Window object for the window named DIARY: if there isn’t such a window,
VBScript will report an error. (The point of getting a Window object for a window
other than the current one is that you can then access that window’s records and
even send commands to it without having to switch back and forth between windows
on the screen).

Making selections
Each of the possible search commands in the Search menu has a corresponding
method in the Window object.

It is also possible to use the Records object to do selections directly without
involving the database window at all: this can be faster and less obtrusive.

The Records object
The Records object represents a selection of records: it is a collection of Record
objects representing records in a database. The Records object lets you do a few
specific things such as writing out or printing selected records, tagging or untagging
them; and it is also useful for making searches and selections without having any
effect on the selection that the user sees on the screen.

Getting a Records object

Records The current selection in the active window.

windowObject.Records The current selection in the given window.

databaseObject.AllRecords All the records in the database.

databaseObject.NoRecords An empty selection.

databaseObject.TaggedRecords The tagged records in the database.

If you change levels of selection, or create or delete records, after getting a Records
object, the Records object won’t be altered to reflect the changes.

See page 121 and
Help Point 725.

 The Records object 65

Adding or removing records
The Add and Remove methods let you add records to the selection or remove them.
They can be useful if you are trying to do a kind of “intelligent tagging” – looking
through the database to see which records need to be selected – without having to
use the normal tagging mechanism.

Making selections
The Records object has a comprehensive set of search methods that mirror the
Search menu and the methods of the Windows object. There is a difference in
behaviour, though: search methods in the Windows object alter the current selection
in the window, but the search methods of Records don’t affect the Records object
they’re used on – instead, they create and return a new Records object that
represents the result of the search.

Example: making a single selection
You already know how to select records in Cardbox, using Search > Clear to get to
Level 0 and then Search > Select to select records matching your chosen criterion.
Here is the equivalent with Records objects.

First, get a Records object that contains all the records in the database:

Set recsAll=Database.AllRecords

Next, apply the Select method to get the selection you want:

Set recsSelected=recsAll.Select("field","value")

You can then use recsSelected in whatever way you want: for example, you can
export records from it to a file, or you can go through the records and edit them, or
you can use it as the basis of another selection.

You could do the same selection in one step:

Set recsSelected=Database.AllRecords.Select("field","value")
Or you could use a single variable, like this:

Set recs=Database.AllRecords
Set recs=recs.Select("field","value")

This works because the Select method creates a new Records object, and this is
then stored in recs and replaces the Records object that was originally there.

Add and Remove don’t
create or delete records:

they only affect their
presence in a selection.

Use whichever idiom is
most convenient, or

whichever one you think
you’ll be likeliest to

understand when you look
at your macro again in a

few months’ time.

 66

Example: multiple selections
Suppose that you have two databases in two windows called A and B. You have to
select, in window B, just those records that match any record in window A. This is
like a relational search, only more so: a relational search could find you the records
in B that matched one record in A, but here you want the records that match any of
them. Here is one way that you might do this. We’ll assume that the fields to be
matched are called FLDA in database A and FLDB in database B.

1 Set recsB=Windows("B").Records
2 Set recsFound=Windows("B").Database.NoRecords
3 For Each rec in Windows("A").Records
4 Set recsTemp=recsB.Select("FLDB",rec.Fields("FLDA"))
5 Set recsFound=recsFound.IncludeFromRecords(recsTemp)
6 Next
7 Windows("B").SelectFromRecords recsFound

1. recsB is the current selection of records in window B. We’ll be using this
selection repeatedly, so it is a lot more efficient to retrieve it once and store it in
a variable.

2. recsFound is a collection of the records that have been found to match so far.
At the end of the process we’ll use it to perform a selection in window B.

3. For Each has the effect of repeating lines 4 to 5 once for each record in the
current selection in window A, with the variable rec containing that record’s
Record object.

4. We take the value of field FLDA in rec, and feed it into a Select command that
operates on recsB. Thus recsFound ends up being the result of a single Select
command on the current selection in window B.

5. We combine recsTemp with recsFound and store the result back into
recsFound. As the loop progresses, recsFound will steadily grow until it
contains all the records we need.

6. Next marks the end of the For Each loop.

7. Now recsFound contains all the records we want, but it has to be made visible
to the user somehow. We could use either SetFromRecords or
SelectFromRecords to alter the current selection in window B. On the whole,
SelectFromRecords seems better, because that will behave like a single Select
command from the user’s point of view. This means that the whole macro will
feel like a single Select command, and so can easily be undone by the user
when the selection is no longer needed.

You could imagine that
window A holds customers

and window B holds product
details, but the principles

illustrated are quite general.

Lines 4 and 5 could be
combined, since

recsTemp isn’t used
elsewhere, but the macro

wouldn’t be any faster and
it would be rather less

readable.

The line numbers aren’t
part of the macro:

they are there
to make the commentary

easier to follow.

To do the same kind of thing
without using objects, you’d
use kept selections and the

Keep > Keep command.

 The Record object 67

The Record object
The Record object represents a record in a database. You can use it do things to
the record, such as tagging, editing and deletion, and to get hold of a Fields object
that gives you access to the individual fields.

Getting a Record object

ActiveRecord The current record in the active window.

windowObject.ActiveRecord The current record in the given window.

databaseObject.NewRecord A newly created record, ready for editing.

recordObject.DuplicateRecord A newly created duplicate of an existing
record, ready for editing.

How editing works
One way of editing records is to use the EditRecord and SaveRecord methods of
the Window object. These act on the currently active record, and they are the exact
equivalent of the user entering the Edit > Edit Record and File > Save commands.

• These are the methods that are stored in a macro if you turn macro recording on
and then start editing a record.

• While you are editing in this way, you can use methods of the Window object
such as TypeText and GoToRecord. Alternatively, you can change the contents
of a field by obtaining a Field object and setting its Text property directly.

• You can only edit the current record, you can only edit one record at a time in
any given window, and the Cardbox user interface (menus, toolbar, status bar)
will change appearance when you start and stop editing a record.

The alternative is to use the Edit and Save methods of the Record object.

• These methods operate independently of any Window object.
• You can edit any record you like, and as many records as you like.
• While you are editing, you can change the contents of a field by obtaining a Field

object and setting its Text property directly.
• Nothing happens to the screen when records are edited and saved (except that

if a record is visible on the screen then it will be updated to show any changes
that were made).

In addition, the For Each
statement applied to a
Records object can be

used to get a Record
object for each record in

the corresponding
selection.

See page 122 and
Help Point 726.

 68

If the user is currently editing this record

If the user is editing a record while your macro makes changes to it, then if the user
discards all changes using File > Quit Without Saving, the changes your macro
made will be discarded as well. In some cases this is a bad thing (for example, if
your macro is editing a whole group of records and you want the result to be
uniform) but in other cases it doesn’t matter. When you use the Edit method you
can choose whether it should be an error for Edit to be applied to a record that is
being edited by the user. Your macro could also use the UserEditing property to
detect whether the user was editing a record and take special action in that case.

The Fields object
The Fields object is not very interesting. Its principal use is as a way of getting hold
of the Field objects that represent individual fields.

Getting a Fields object

Fields The fields in the current record in the active
window.

recordObject.Fields The fields in the given record.

The Field object
The Field object represents the contents of a field. Getting its Text property
retrieves the contents of the field and setting its Text property changes the contents
of the field.

Getting a Field object

Fields("name") The field called name in the current record in
the active window.

recordObject.Fields("name") The field called name in the given record.

fieldsObject("name") The field called name in the given Fields
object.

See page 124 and
Help Point 727.

See page 125 and
Help Point 728.

 The Field object 69

Using the Text property

When retrieving text
The official way to retrieve the text of a field is to use its Text property: for example,

MsgBox "The field is " & Fields("TEL").Text

or

Set fld=Fields("TEL")
MsgBox "The field is " & fld.Text

Because Text is the “default” property of the Field object, you can use the following
abbreviated forms:

MsgBox "The field is " & Fields("TEL")

or

Set fld=Fields("TEL")
MsgBox "The field is " & fld

and VBScript will assume the Text property automatically.

When setting text
The official way to set the text of a field is to use its Text property: for example,

Fields("TEL").Text="555-1212"

or

Set fld=Fields("TEL")
fld.Text="555-1212"

With the first form, abbreviation is possible:

Fields("TEL")="555-1212"

But don’t do this:

Set fld=Fields("TEL")
fld="555-1212"

won’t do what you expect, because the second line will just tell VBScript to discard
the existing reference to a Field object and store a string value directly into the
variable called fld. So this is one case where you really do have to use the Text
property.

 70

Indexed words and the TextFormat property
Strings in VBScript don’t have any special index markers, which means that when
you use the Text property to get text from a Cardbox field into a VBScript variable,
all the indexing information is lost: if you have a field called CO containing the words
“Smith & Son”, where Smith is indexed and the rest of the field isn’t, doing
txt=Fields("CO").Text will result in txt containing the string "Smith & Son",
with no indication of what was and wasn’t indexed.

This is often a good thing, since a lot of the text processing that you’ll find yourself
doing in VBScript doesn’t pay attention to indexing – but sometimes you do need to
know about indexing. One obvious and common case is when you’re copying text
from one field into another, and some words are indexed while others aren’t.

Copying from one field to another
The problem with the Text property is that extracting text from a field into a string
using Text strips all indexing information from it. Storing this plain text into a field
then indexes it according to the field’s indexing mode.

If this is good enough for you, you don’t need to read any further: you can use any
method you like for transferring text between fields.

The best and easiest way to copy text from one field to another is:

Fields("TO") = Fields("FROM")

If you are able to use this then you also don’t need to read any further – except,
perhaps, to see why it’s so good:

1. Fields("FROM") results in a Field object (not a string of text).

2. Storing this into Fields("TO") tells Cardbox to store the contents of one Field
object into another.

3. Cardbox is intelligent enough to understand that this means that you want to
copy indexing information from one field to another, not just the text.

Note that this only works when you’re copying fields directly. If you use something
like x=Fields("FROM") : Fields("TO")=x then VBScript will convert the field to
a string on the way (to store it into the variable x), which will lose all the indexing
information. For the same reason, this simple method won’t work if you want to do
something cleverer than just replacing the whole of the destination field with the
entire contents of the source field.

By default, the text will be
indexed if the field’s

indexing mode is All or
Auto and not indexed

if the mode is
Manual or None.

You can copy several
fields at once using this

technique: see page 99.

 The Field object 71

The TextWithIndex property
TextWithIndex behaves a lot like Text but it uses special markers to indicate
indexing. You’ve already seen that for a field containing “Smith & Son”, Text gives
"Smith & Son". TextWithIndex takes account of indexing, so it represents this
field as "*Smith & Son".

TextWithIndex is a property that can be both read and written, so here is another
way of copying data from one field to another while preserving indexing information:

Fields("TO").TextWithIndex = Fields("FROM").TextWithIndex

Here is how it works:

1. Fields("FROM").TextWithIndex results in a string representing the contents
of FROM, with indexed words marked by asterisks.

2. Storing this into Fields("TO").TextWithIndex makes Cardbox interpret
those asterisks as index markers.

What this means is that indexing information won’t be lost while you’re processing
field text as VBScript strings. Here, for example, is how to add text from one field to
the end of another field:

textTo=Fields("TO").TextWithIndex
textAdd=Fields("FROM").TextWithIndex
if Len(textTo)=0 Then
 Fields("TO").TextWithIndex=textAdd
 Else
 Fields("TO").TextWithIndex=textTo & vbLf & textAdd
 End If

In detail, the macro checks whether the TO field is empty. If it is, it just copies
FROM into it; but if TO already contains some text, it combines the original text with
the contents of FROM (inserting a new-line marker in between, so that the contents
of FROM will start on a separate line) and stores it into TO. Because the macro
uses TextWithIndex, the original indexing state of the text being processed will be
unharmed by all this string manipulation: indexed words will stay indexed, and
unindexed words will stay unindexed.

You can still have
asterisks in your field text

if you want: the
TextWithIndex format is

designed to work with all
possible field contents.

 72

The TextFormat property
An alternative to remembering to use TextWithIndex every time is to use
TextFormat to change the meaning of the Text property itself.

Let’s consider the old example again: a field containing the words “Smith & Son”,
where “Smith” is indexed and “& Son” isn’t. The value of the Field object’s Text
property will depend on the object’s TextFormat property, as follows:

TextFormat property Text property

0 (cbxTextNormal) Smith & Son

1 (cbxTextIndex) *Smith & Son

2 (cbxTextXML) Smith & Son

3 (cbxTextXMLIndex) <x>Smith</x> & Son

These different formats are useful for different purposes. For straightforward display
and processing, cbxTextNormal is best; cbxTextIndex lets your macro see what
words are indexed; the XML formats are better if the programs you are going to
communicate with also understand XML.

Using the Text property with TextFormat set to cbxTextIndex is exactly the same
as using TextWithIndex. Which of the two approaches you use is up to you: do
whatever seems most convenient and least prone to errors.

There are two ways of setting the text format. One is to set the TextFormat
property of the Fields object, in which case all Field objects that are created from
that object will receive that text format. The other is to set the TextFormat property
of a Field object before you use it to retrieve or set the text of the field.

Object lifetimes: a warning
You might think that the most natural way of using TextFormat should be
something like this:

Fields("NAME").TextFormat=cbxTextIndex
MsgBox "The text is " & Fields("NAME")

Unfortunately this won’t work. The first line will create a Field object and set its
TextFormat property, but because you haven’t saved the object into a variable,
VBScript will discard the newly created Field object, and the second line will create a

For more details of
these text formats, see

Help Point 754.

The TextLength property
will always be 11,

because the field is
11 characters long.

If you don’t explicitly set
TextFormat anywhere, the
default is cbxTextNormal.

 The Images object 73

brand new Field object that will not remember the TextFormat you gave its
predecessor. The correct approach is something like this:

Set fld=Fields("NAME")
fld.TextFormat=cbxTextIndex
MsgBox "The text is " & fld

You could try to save time by using the TextFormat property of the Fields object,
but again you’ll have to be careful, because Fields isn’t a Fields object itself, just a
property that creates a Fields object for the current record. Using Fields twice will
create two successive Fields objects, and the text format of the second one won’t be
affected by the TextFormat setting that you used in the first. So if you do decide to
use the Fields object, the alternative should end up looking like this:

Set flds=Fields
flds.TextFormat=cbxTextIndex
MsgBox "The text is " & flds("NAME")

This approach is no shorter than the others if just one field is involved, but if you are
processing several fields then it saves a lot of space, since setting the TextFormat
property for the Fields object means that you don’t have to set the property
separately for every field.

The Images object
The Images object represents the images in a record. You can use it to get hold of
an Image object for any particular image, or you can use its methods to add new
images, from files or by pasting them from the Clipboard. (There is no method for
scanning images because the interaction with TWAIN, and with scanner drivers
generally, makes scripting impossible).

Getting an Images object

Images The images in the current record in the active
window.

recordObject.Images The images in the given record.

You can also set the
TextFormat property of a
Record object, to control
the TextFormat property

of all the Fields objects
created from it (and all

their Field objects).

See page 126 and
Help Point 729.

 74

The Image object
The Image object represents an image.

Getting an Image object

Images(n) The nth image in the current record.

recordObject.Images(n) The nth image in the given record.

imagesObject(n) The nth image in this image object.

imagesObject.ReadFromFile Reads an image from a file and returns an
Image object that represents that image.

imagesObject.Paste Pastes an image from the Clipboard and
returns an Image object.

Example: importing an image from a file
Set img=Images.ReadFromFile "C:\MYFILES\TESTIMG.JPG"

reads an image from a file. Until the record containing the image is saved, you can
use properties of the Image object to rotate the image and control its size and the
degree of compression to be used.

The Databases object
The Databases object isn’t much used, but it is a way of getting a list of all the
databases open in this particular copy of Cardbox.

Getting a Databases object

Databases The Databases object for this copy of Cardbox.

See page 127 and
Help Point 730.

See page 128
and Help Point 732.

 The Database object 75

The Database object
The Database object represents a Cardbox database. It lets you do things that
affect the database as a whole, such as removing tags or deleting kept selections. It
also lets you create Records objects referring to the database.

Getting a Database object

Database The database open in the active window.

windowObject.Database The database open in the given window.

Example: automatic backup
Suppose that you have a workspace containing a number of databases that reside
on a remote server. Then you can use the following macro to download backup
copies of them all onto your PC:

For Each db In Databases
 DownloadOneDatabase db
 Next

Sub DownloadOneDatabase(db)
 filename=db.FullName
 If Left(filename,10)<>"cardbox://" Then Exit Sub
 posName=InstrRev(filename,"/")
 fname="C:\Downloads\" & Mid(filename,posName+1)
 db.Download fname & ".FIL",cbxDownloadFIL
 db.Download fname & ".FMT",cbxDownloadFMT
 End Sub

The For Each / Next loop calls the subroutine once for every database that is
currently open. The subroutine looks at the filename of the database. If the filename
doesn’t start with “cardbox://” then the database is not a server-based one but is on
your local hard disk, so it can’t be downloaded and the subroutine exits. Next, the
subroutine finds the last slash in the filename, because this separates the server
name from the database name. Then it constructs a filename on your hard disk
based on that database name (obviously, you could use a different folder to store
the downloaded copy of the file). Finally it downloads both the database file and the
format file, using the appropriate filetype in each case.

See page 128
and Help Point 733.

In addition, the For Each
statement applied to a

Databases object can be
used to get a Database

object for each database
currently open in this copy

of Cardbox.

As a refinement, you
could modify this macro to

look at the name of the
server and use it to

decide which folder the
database should be

downloaded into.

 76

Other Cardbox object types
Applications (Help Point 720) lists all the currently open copies of Cardbox: you

would never use it in a macro, but it could be useful if you had a separate
program that wanted to connect to Cardbox but needed to ask you which copy to
connect to.

HistoryWindow (Help Point 722 and page 114) lets you control the size and
position of the History of Selections window.

FieldDefinition (Help Point 735 and page 130) tells you the index mode and other
attributes of a field.

Connection (Help Point 736 and page 131) lets you open a TCP/IP connection from
within a macro and send and receive data on it. It could be used, for example,
as part of a macro that sent email directly from Cardbox without having to
depend on a separate email program.

Part Five
Objects outside Cardbox

FileSystemObject; sending faxes; some approaches to

email; controlling Microsoft Office.

 FileSystemObject 79

VBScript can create objects of any type as long as the software for that object type
is currently available on your Windows system. We’ve documented the
FileSystemObject object because it’s important and it’s built in to every Windows
system, and we’ve documented a few other objects to give you an idea of the
principles involved. In general the rule is always the same: find the documentation
for the program that that you want to use, and read it. Failing that, contact the
manufacturer and ask whether the program has a scripting interface that can be
used with VBScript.

FileSystemObject
For someone coming to VBScript from another programming language, one of the
most puzzling features is the lack of any built-in commands for reading or writing
files. But although the language doesn’t handle files, an object is provided for file
access, called FileSystemObject.

Getting a FileSystemObject
Set fso=CreateObject("Scripting.FileSystemObject")

creates a FileSystemObject and stores a reference to it in the variable fso.

Opening and reading a file
Set stm=fso.OpenTextFile("filename")

opens a file for reading, creates a TextStream object and stores a reference to it in
the variable stm. The TextStream object has a number of methods and properties,
of which the following are the most important:

AtEndOfStream True if the end of the input data has been
reached, False if there is still something left to
read.

Read(n) Reads n characters and returns them as a
string.

ReadLine Reads an entire line of text and returns it as a
string.

ReadAll Reads the whole file and returns its contents
as a string.

After you have finished reading a file, you should close it using the Close method
(after Close, you can’t use any other methods of the TextStream object).

For other options of
OpenTextFile, see

Microsoft’s documentation
on the Web, or one of the
books listed on page 55.

 80

Creating and writing a file
Set stm=fso.CreateTextFile("filename")

creates a file, opens it for writing, creates a TextStream object and stores a
reference to it in the variable stm. If a file with the chosen name already exists,
VBScript will report an error and will not overwrite the file.

Set stm=fso.CreateTextFile("filename",True)

is identical except that if the file already exists, it will be overwritten and no error will
be reported.

The TextStream methods for writing to a file are:

Write "text" Writes the given text to the file.

WriteLine "text" Writes the given text to the file and then starts
a new line.

After you have finished writing a file, you should close it using the Close method.

Example: translating a file format
Suppose that you have data that you want to import into Cardbox, but the data file
has the layout of a printed report, with vertical bars separating the columns:

1 |2 |3|4

The aim is to turn this into a comma-separated format that Cardbox can read easily:

"1 ","2 ","3","4 "

Here is one way of doing this:

Set fso=CreateObject("Scripting.FileSystemObject")
Set input=fso.OpenTextFile("InputFile.txt")
Set output=fso.CreateTextFile("OutputFile.txt")
While Not input.AtEndOfStream
 fullLine=input.ReadLine
 items=Split(fullLine,”|”)
 For i=LBound(items) To UBound(items)
 items(i) = """" & items(i) & """"
 Next
 output.WriteLine Join(items,",")
 Wend
input.Close
output.Close

 FileSystemObject 81

We’re not going to give a detailed commentary on this macro, but you should be
able to see how the ReadLine and WriteLine functions are used to read from one
file and write to the other.

• If you are faced with a file with odd separator characters, check the
documentation for the ReadFromFile method before you start, because you can
use it to specify separator characters other than the comma: so you may be able
to get away without doing any conversion at all if the vertical bars were your only
problem.

• The output file contains spaces at the end of each field because we didn’t feel
like removing them, and Cardbox removes trailing spaces anyway when it
imports a file. If you want to remove spaces yourself during the conversion,
replace the line inside the innermost loop with the following:

 items(i) = “””” & Trim(items(i)) & “”””

Other functions
FileSystemObject contains methods and properties that copy, rename, list, create
and delete files and folders. For full details see one of the reference books listed on
page 55 or see Microsoft’s own documentation on the Web.

 82

Sending faxes
Like most Windows programs, Cardbox can print documents but it can’t send them
as faxes: the closest it can get to this is “printing” to a fax device which then pops up
a window so that you can fill in the fax number to be used.

Scripting objects let you tell the fax system where to send the fax, so that no window
pops up and it’s possible to send bulk faxes without human intervention. We give
examples for Symantec’s WinFax Pro and one for Microsoft Fax Services for
Windows XP, because their architectures are different and it’s useful to see how a
script can cope with the differences. Help Point 512 gives more options and details.

WinFax Pro
WinFax Pro from Symantec has an object interface that allows you to send faxes
directly from other programs including Cardbox.

Sending standard faxes
In this scenario, you have a document file that contains a fax you would like to send,
and your current selection lists the people you would like to send this fax to.

Const NUMBERFIELD = "FAXNO"
Const NAMEFIELD = "RECNAME"

Set winfax=CreateObject("WINFAX.SDKSEND8.0")
winfax.ShowSendScreen(0)
winfax.AddAttachmentFile("c:\Samples\Message.Doc")
For Each rec in Records
 winfax.SetNumber(rec.Fields(NUMBERFIELD))
 winfax.SetTo(rec.Fields(NAMEFIELD))
 winfax.AddRecipient()
 Next

winfax.Send(1)

' Wait for WinFax to finish queuing the fax.
Do While winfax.IsEntryIDReady(0) <> 1
 Sleep 20
 Loop

winfax.Done

• We use Const declarations to isolate the field names and make them easier to
change.

Although the WinFax
scripting interface has

remained the same for
years, Symantec may

change it at any time: so
please consult their latest

documentation before
trying to send faxes.

We assume that a field
called RECNAME

contains a short name of
the recipient, to make

WinFax’s status reports
more meaningful. If you

haven’t got a suitable
field, remove all

references to RECNAME
and NAMEFIELD.

 Sending faxes 83

• We have copied all the WinFax commands straight from the WinFax
documentation.

• Having started a fax job by giving WinFax an “attachment file”, we loop through
every record in the current selection. Each SetNumber / SetTo / AddRecipient
cycle adds a new recipient to WinFax’s list.

• Send tells WinFax to start adding the new fax to its queue of outgoing faxes. We
then wait in a Do While loop until WinFax reports that it has accepted the
queued fax request.

• Finally, we use WinFax’s Done method, because the documentation says that
we must: it implies that something will go wrong if we don’t do this, although it
doesn’t say what.

Sending customised faxes
You may prefer to send a different fax to each of your recipients. In that case,
create a format that will print the fax in exactly the form you want the recipient to see
it, and use View > Change Format to make that the active format.

const NUMBERFIELD = "FAXNO"
const NAMEFIELD = "RECNAME"

Set winfax=CreateObject("WINFAX.SDKSEND8.0")
winfax.SetPrintFromApp(1)
winfax.ShowSendScreen(0)

Set recs=ActiveWindow.Records
n=recs.Count

For i=1 to n
 Set rec=recs(i)
 winfax.SetNumber(rec.Fields(NUMBERFIELD))
 winfax.SetTo(rec.Fields(NAMEFIELD))
 winfax.AddRecipient()
 winfax.Send(1)
 Do While winfax.IsReadyToPrint=0
 Sleep 20
 Loop
 Print cbxPrintMainRecord,,i,i,"WinFax"
 Do While winfax.IsEntryIDReady(0) <> 1
 Sleep 20
 Loop
 Next

winfax.Done

• The SetPrintFromApp method tells WinFax to accept input from a program
instead of printing a document file.

 84

• We loop through every record in the current selection. We do this with For
rather than For Each because we need to know our position in the selection, for
the Print method.

• After the usual SetNumber / SetTo / AddRecipient cycle adds a new recipient
to WinFax’s list, we use Do While to wait until WinFax reports that it is ready to
accept printed output.

• Once WinFax is ready, we use Cardbox’s Print method to print one record to a
printer called “WinFax”.

There are a great many options that you can set when sending faxes through
WinFax but you will need to read the WinFax documentation to find out what they
are and how to use them.

Microsoft Fax Services

Sending customised faxes
As before, prepare a format that presents your records in the form that you’d like the
recipients to see them, and switch to that format. The macro looks like this:

Const NUMBERFIELD = "FAXNO"
Const NAMEFIELD = "RECNAME"
Set server=CreateObject("FaxComEx.FaxServer")
server.Connect ""

Set fso=CreateObject("Scripting.FileSystemObject")
tempFilename=fso.GetSpecialFolder(2) & "\" _
 & fso.GetTempName & ".tif"
Set recs=ActiveWindow.Records
n=recs.Count

For i=1 to n
 Set rec=recs(i)
 Print cbxPrintMainRecord,,i,i,"Fax," & tempFilename
 Set doc=CreateObject("FaxComEx.FaxDocument")
 doc.Body=tempFilename
 doc.Recipients.Add Fields(NUMBERFIELD),Fields(NAMEFIELD)
 doc.connectedSubmit server
 doc=0
 fso.DeleteFile tempFilename
 Next

The strategy is different from the WinFax case. With Microsoft Fax, we have to write
each fax out as a file and then ask the fax system to send it.

 Sending faxes 85

• There are two objects required for sending faxes: a FaxServer object and a
FaxDocument object. You only need one FaxServer object, so we create it at the
very start of the macro.

• We start by getting hold of a FileSystemObject and using its
GetSpecialFolder and GetTempName methods to create a unique filename.

• For each record in turn, we print the record to a printer whose name is “Fax”
combined with the filename we’ve just chosen. This has the effect of creating a
file that is the graphical equivalent of the merged record, in a format suitable for
faxing.

• We then create a FaxDocument object and set its “body” (what actually gets
faxed) and its recipient. We then use its connectedSubmit method to submit
the document to the FaxServer that we created earlier.

• Finally, we release the FaxDocument reference by setting the doc variable to
something else (the number zero was a simple and readable choice), and we
delete the temporary file.

There are many options available, covering such things as cover pages and
scheduling. Help Point 512 links to a page that lists the options. The same Help
Point tells you how to send a single document as a fax to multiple recipients, and
even how to send a fax that is just a cover page with a message and has no
attached document at all.

 86

Sending emails
Help Point 529 has a comprehensive set of sample macros for MAPI, Eudora,
Outlook, or Outlook Express. The principles behind these are essentially the same
as those you’ve seen in the fax examples and it isn’t useful to print them all here.
The macros don’t actually send emails but add them to your email outbox, which lets
you use all your email system’s facilities for actually transmitting the emails and
checking on their progress.

Controlling Microsoft Office
Microsoft Office is an immense product: the Word 2000 Developers’ Handbook
alone is 1,200 pages long. This means that we can’t go into any depth at all with
describing how Office (or even Word) can be programmed. This is, after all, a
Cardbox book and not a Word one. But just so that you can see that Cardbox can
drive Word quite simply, here is a sample macro:

Records.WriteToFile cbxWriteFormatCSV+ _
 cbxWriteOptionFieldHeading+cbxWriteOptionAlwaysQuote, _
 "C:\temp.txt"
Set doc=GetObject("C:\merge.doc")
Set mrg=doc.MailMerge
 mrg.Destination=0
 mrg.SuppressBlankLines=True
 mrg.DataSource.FirstRecord=1
 mrg.DataSource.LastRecord=-16
 mrg.Execute False
doc.Application.Visible=True

This macro presupposes the existence of a Microsoft Word merge document called
merge.doc that has been set up to use the file temp.txt as its data source.

• The macro uses Cardbox’s WriteToFile method to write selected records to
the temporary file. This is the only Cardbox method call in the entire macro.

• The macro then uses GetObject to retrieve a Word document object that refers
to merge.doc, sets various attributes to control the mail-merge operation,
executes the merge, and finally makes the document visible so you can see and
print the result.

We created this piece of VBScript by using Word’s macro recorder to record the
action of performing a mail-merge. We then looked at the resulting program code in
Word and translated it into VBScript.

For hints on translating
Microsoft Office

macros into VBScript,
see Help Point 763.

Part Six
Using other languages

Visual Basic; VBA in Microsoft Office; VBScript in

other contexts; other languages.

 Getting a Cardbox object 89

Now the boot is on the other foot. Instead of getting Cardbox macros to control
other programs, we’ll look at getting other programs to control Cardbox.

There are several reasons why you might want to do this. You might decide that
VBScript is not a rich enough language for what you want to do, or you might have
your own favourite language and feel happiest programming in that. You might also
be planning to use Cardbox in conjunction with Microsoft Office and want all the
macros to be launched from Office rather than from Cardbox.

Controlling Cardbox from outside is easier than it looks. All the Cardbox objects,
methods and properties are accessible from anywhere, and the fact that we’ve been
showing them to you in the context of VBScript running inside Cardbox itself was
just a matter of convenience. Every modern language has its own way of accessing
objects and their methods and properties, so whether you are using Visual Basic,
VBA, Java, Delphi or C++, the knowledge of Cardbox objects that you’ve acquired
so far is still relevant.

Getting a Cardbox object
The key Cardbox object is Application, which represents a running copy of Cardbox.
In Visual Basic and related languages, you can get hold of an Application object for
an already running copy of Cardbox like this:

Set cbx=GetObject(,"Cardbox.Application")

If there is more than one copy of Cardbox running then you don’t have any control
over which copy your Application object represents. The alternative is to use the
filename of the workspace to specify which copy you want to talk to:

Set cbx=GetObject(“C:\path\filename.cbw”)

To start a new copy of Cardbox, use this:

Set cbx=CreateObject(“Cardbox.Application”)

The newly created copy of Cardbox will be invisible unless you make it visible by
using the Visible method of the Application object. If you release the Application
object (or your program ends) without making Cardbox visible, the copy of Cardbox
you have created will silently close itself.

Navigating through Cardbox
The lines on the map of the Cardbox object model show how to get from one object
type to another. To take one example: if you are only interested in doing a database
search without worrying about what Cardbox is currently displaying, use the
Databases property to get a Database object for the database you’re interested in,
or use Windows.OpenFile to open the database if it isn’t already open. On the

For more details, and
more languages,

see Help Point 764.

You can also create an
Applications object and

use that to enumerate all
the running copies of

Cardbox until you find
the one you want: for
more about this, see

Help Point 720.

 90

other hand, if your program is planning to drive Cardbox in a way that is visible to
the user, then use the Windows property to locate a named Window object or
ActiveWindow to get a Window object for the active window.

Improving speed
Be economical about method and property calls as far as you can, because they
take more time when they come from an external program. Suppose that you want
to set the values of three fields in the current record. You might be tempted to do
this:

cbx.ActiveWindow.Fields(“FIELD1”)=1
cbx.ActiveWindow.Fields(“FIELD2”)=”xxx”
cbx.ActiveWindow.Fields(“FIELD3”)=123

but it is enormously inefficient. The ActiveWindow method will be called three
times in a row, as will the Fields method, and the indexing operation that extracts a
Field object from the Fields object, and the assignment to the implicit Text property
of the Field object. Compare this:

Set flds=cbx.ActiveWindow.Fields
flds(“FIELD1”)=1
flds(“FIELD2”)=”xxx”
flds(“FIELD3”)=123

Now the ActiveWindow and Fields methods are called once only. If you are
setting many field values and processing many records, this will save a lot of time.

Translating from Cardbox macros
When you record a macro in Cardbox there are practically no object references,
because Cardbox knows that the macro will be run in Cardbox’s own macro
environment, which inserts object references for you: thus it will happily record
ClearTagged even though the full command, with object references, is really
ActiveWindow.Database.ClearTagged. It’s often useful to start programming by
recording an operation in Cardbox and then translating it into your own language,
but if you do this then use the Index of Methods and Properties on page 132 to
make sure that you insert the right object references: your language won’t insert
them for you.

You will also see that Cardbox uses constants such as cbxWriteFormatCSV to
control the way that various commands work. Your programming language may well
import values for these constants from the built-in Cardbox definitions, but if it
doesn’t then you will have to replace the constants by numbers or define their values
for yourself: see Help Point 762.

If you really need to
improve performance,

you can set all the
field values with

just one command.
See Help Point 753.

 Visual Basic 91

Visual Basic
When you open a Visual Basic project that you intend to use with Cardbox, enter the
command Project > References and scroll through the list of available references
until you find “Cardbox”. Turn this option on. (If you also have a reference to
“Cardbox Type Library”, ignore it because it refers to Cardbox 2.0).

You will then be able to declare variables with any of the Cardbox object types:

Dim cbx As Cardbox.Application
Set cbx=GetObject(,”Cardbox.Application”)
Dim win As Cardbox.Window
Set win=cbx.Windows(“LETTERS”)

Declaring variables like this has several advantages:

• Visual Basic can display Intellisense™ prompts and allow auto-completion while
you are typing your program.

• You can use Cardbox’s built-in constants in your program.
• Visual Basic can check, before you run your program, that you aren’t trying to

store the wrong type of object into the wrong type of variable or using the wrong
method or property for the object type. (VBScript can’t do this because VBScript
variables don’t have fixed types).

VBA in Microsoft Office
VBA (“Visual Basic for Applications”) is the macro language used by Microsoft
Office. It is a close cousin of Visual Basic and can be used to drive Cardbox in just
the same way.

When designing a VBA macro that will be used with Cardbox, enter the command
Tools > References in the Microsoft Visual Basic window, scroll through the list of
available references until you find “Cardbox”, and turn this option on. You will then
be able to declare variables with any of the Cardbox object types, while at the same
time having access to the entire Office object model. Here is a simple example:

Dim cbx As Cardbox.Application
Set cbx=GetObject(,”Cardbox.Application”)
Selection.TypeText cbx.ActiveWindow.ActiveRecord.Fields(“NA”)

When you play this macro in Microsoft Word, it does the following:

1. It gets a reference to the currently running copy of Cardbox.

2. It uses Cardbox’s ActiveWindow, ActiveRecord, and Fields methods to get
the contents of the field called NA in the current record in the currently active
window in Cardbox.

3. It types the text of this field into Word, at the current cursor position.

These notes relate to
Visual Basic 6.0, but

other versions may be
similar.

Intellisense doesn’t work
with the Print method,
presumably because

Print is also a command
in Visual Basic. This
Print method will still

work despite this.

These notes relate to
Word 2002, but other

Office applications
are similar.

 92

This straddling of the object model of several applications is what makes VBA
macros so useful when used with Cardbox.

• A bug in Office means that the Left function (used to extract substrings from
strings) does not work in a macro that incorporates the Cardbox object model,
presumably because Cardbox defines a property called Left and VBA gets
confused by this. The way round the bug is to say VBA.Left instead of Left.
VBA.Left always works perfectly in a Word macro.

VBScript in Windows
Apart from using VBScript in Cardbox, you can also use it in Windows itself. If you
write a program (a “script”) in VBScript and give it the filetype .vbs, then double-
clicking on it will execute the script. Some people like using VBScript in this way
because running a script is then an action that is controllable by Windows itself – so
that you can, for instance, schedule a script to be run daily at a specific time.

In this context VBScript doesn’t have any of the privileged access to commonly used
method and property names that it does when it’s used inside Cardbox, so you will
have to work your way through the Cardbox object model just as you do with Visual
Basic.

The main thing to be careful of is that Cardbox’s built-in constants are not made
available to you automatically. So if you say something like

win.Print cbxPrintMainRecord

you’ll get an error. (If you are using Option Explicit, VBScript will complain that a
variable hasn’t been declared; if you aren’t, VBScript will use 0 as a default value for
cbxPrintMainRecord, but this is not a valid option for the Print method and
Cardbox will complain about an invalid argument).

The cure for this problem is to import Cardbox’s constant definitions into the start of
your script: you can find them through Help Point 762.

VBScript in web pages
VBScript was originally designed as a client-side scripting language for web pages,
and so you can certainly put VBScript code in your web pages that accesses or
drives Cardbox. In practice it is of limited use. First of all, it depends on using one
manufacturer’s web browser and therefore can’t be used on the general Internet; but
more importantly, Internet Explorer’s security settings make it quite difficult to run
this kind of script without running into an immense number of warning messages. In
any case, if you are running a Windows program to access Cardbox content, you
might as well use Cardbox itself and not a painstakingly crafted web page: the Client
Edition of Cardbox is, after all, freely downloadable.

The Windows facility that
makes this possible is

called the Windows
Scripting Host, or WSH

for short.

 VBScript in Active Server Pages 93

VBScript in Active Server Pages
Active Server Pages (ASPs) are web pages that are processed by your web server
in some way before they are sent to the requesting web browser. Using VBScript to
access Cardbox from within an ASP has some advantages.

1. You have access to all the power of Cardbox and can make it available to web
users even if they aren’t running Windows. You can do anything: from a simple
data lookup to help fill in some of the data in your page, to a sophisticated HTML
form interface that lets people search your database using their web browsers.

2. Because nothing happens at the browser end, there are no security or
compatibility issues to worry about. By the time the ASP page has arrived at the
browser, it is ordinary standard HTML that any browser will understand.

Setting up ASPs and linking them to Cardbox databases requires a sound know-
ledge of the workings of Active Server Pages and of your web server, and we’re not
going to go into more detail on this subject here. Help Point 765 suggests some
sources of further information.

Other programming languages
Visual Basic and its cousins are not the only languages that can handle objects: in
fact, most modern programming languages can do this in one way or another. We
are not going to go through the details of interfacing them all to Cardbox because
the principles are essentially the same whatever the language, and the details often
vary widely between vendors: you should check the documentation for details of
COM (Common Object Model) support.

Cardbox objects – the GetObject and CreateObject functions that we have
described are specific to the Visual Basic family, and you will have to consult
your own language’s documentation to find out how to connect to existing
Cardbox objects or create new ones. Help Point 764 has some suggestions.

Type library support – if your language lets you import type libraries (or “object
libraries”), then it will be able to import the type library for Cardbox. Do this if
you can, because it will make your programming easier (for example, it may
mean that your development environment can identify the Cardbox object types
and know which methods and properties are valid for each).

Constant definitions – if your language can’t get valid values for the Cardbox
constants such as cbxPrintMainRecord, you may need to add the necessary
definitions by hand: see Help Point 762.

Part Seven
Examples and strategies

Examples of Cardbox macros, with explanations of how

they work.

 Index of examples 97

Index of examples
Appending from one field to another – page 71.

Batch operations – extending a single macro to process all selected records:
pages 24, 61 and 105.

Calculations – calculating tax: pages 23 and 60. Totalling across records: page 42.
Totalling within a field: page 99.

Closing Cardbox – page 63.

Converting one record with many images to many records with one image each –
Help Point 640.

Copying from one field to another – one field at a time: page 70. Multiple fields at
once: page 99.

Copying text to the Clipboard – page 62.

Downloading databases for backup – page 75.

Exporting images to separate files – Help Point 598.

Extracting numbers from a field – ZeroIfBlank: page 47.
BulletproofNumericValue: page 55.

Intelligent duplication – page 99.

Mail-merging through Word – page 86.

Merging multiple selections – page 66.

Opening a database – page 63.

Opening files on your computer – page 98.

Opening web pages – page 98.

Selection on dates (“What do I need to do today?”) – page 21.

Sending faxes – page 82.

Sending emails – Help Point 529.

Sorting into specialised sequences – page 104.

Telephone dialling – page 98.

Temporary fields – page 104.

Translating unusual file formats – page 80.

Using a database as a lookup table – pages 102 and 106.

Using a database as a thesaurus – page 103.

 98

Some quick actions

Telephone dialling
If you have the right autodialling software and hardware installed, the following
macro will dial the number stored in the field called TEL. A more sophisticated
version could process or reformat the number before it is dialled: for example, by
inserting or removing a dialling code.

Dial Fields("TEL")

Opening web pages
If you prefix a web address with http:// then Cardbox will underline the address
and will open the page as soon as you click on it. If you don’t like to see these
prefixes on the screen, you can design a macro like the following one, which opens
the web page whose address is stored in a field called WEB. You could design a
button in the format, or assign a keystroke to make it easy to run this macro.

Launch "http://" & Fields("WEB")

You can extend this quite easily: suppose that you can have several web addresses
in a field and want to be able to open all of them together. Here is a macro that
does this:

webs=Split(Fields("WEB")," ")
For i=LBound(webs) To UBound(webs)
 Launch http:// & webs(i)
 Next

Opening files on your computer
Sometimes you’ll want your Cardbox databases to refer to other files stored on your
computer. For example: we store our invoices as Word files, and our sales ledger
database in Cardbox shows an invoice number for each record. To open the invoice
for a given record, we can use a macro like this:

Launch "C:\Office\Invoices\" & Fields("IN") & ".doc"

Windows provides its own mechanism, OLE (“Object Linking and Embedding”) to
support links to files, but it is cumbersome and bureaucratic, so this “poor man’s
OLE” is often the quickest and most effective solution. We can easily elaborate the
macro to handle more complex cases: for instance, if invoices of more than a certain
age are archived and stored in another location.

See Help Point 562.

You can use the same
technique to send emails
without needing to enter

the mailto: prefix.

This technique is
specially useful for MP3

music files.

 Field manipulation while editing 99

Field manipulation while editing
To copy one field to another within the current record, use a macro like this:

Fields("DEST")=Fields("SRC")

To copy several fields at once, use something like this:

Fields("DEST1,DEST2")=Fields("SRC1,SRC2")

To copy a field from another record (whose Record object you have previously
stored in a variable called rec), use a macro like this:

Fields("XXX")=rec.Fields("XXX")

If you want to add (append) the text of one field to the end of another, see page 71.

For an example of field arithmetic, see page 23.

If you want to total a list of numbers in one field (say, LIST) and store the result in
another field (say, TOT), here is one way of doing it:

nums=Split(Fields("LIST")," ")
total=0
For i=LBound(nums) To UBound(nums)
 total = total + nums(i)
 Next
Fields("TOT")=total

Intelligent record duplication
Cardbox lets you create a blank record with Edit > New Record and it lets you create
an exact duplicate of the record you’re looking at with Edit > Duplicate Record, but it
doesn’t do anything in between: it can’t duplicate some fields but not others. Here is
a macro that will do this for you.

Set recOld=ActiveRecord
NewRecord
Fields("TITLE,PUB,AUTHOR")=recOld.Fields("TITLE,PUB,AUTHOR")

Automatic calculations
You may want some actions and calculations to happen automatically when a record
is saved (as if you were creating your own validators). Cardbox doesn’t allow you to
override its built-in commands like this, but you can get a similar effect by
programming a macro to be activated with the Ctrl + S keystroke and then training
your users to use the keystroke rather than the File > Save command.

 100

Building macros that use objects

Changing an existing macro to use objects
One Cardbox user has the following problem: he has two databases, open in
windows called PROC and EMAIL. They both have the same number of records
selected, and he has to transfer the contents of one particular field (called AB) from
each record in EMAIL to the corresponding record in PROC. Here was his first
solution, obtained by simply recording the actions he was taking manually and
adding a For / Next loop to it:

For pos=1 to ActiveWindow.RecordCount
GoToRecord pos
EditRecord
GoToField "AB"
Command cmdSelectAll
Command cmdCopy
DontSaveRecord
Activate "PROC"
EditRecord
GoToField "AB"
Command cmdSelectAll
Command cmdDelete
Command cmdPaste
SaveRecord
NextRecord
Activate "EMAIL"
Next

The big trouble with this macro is that it is slow. If you think through what it’s doing
then it’s not difficult to see why. It has to step through every record in two
databases, and for each record it has to switch from one window to another and
back again. It also has to edit one record just to get the contents of one of its fields.

Using Records for maximum speed
If you forget about the recorded commands and look at what the core of this macro
is actually doing, you’ll come up with something like this:

1. Look at the nth record in the EMAIL database, and extract the contents of field
AB.

2. Edit the nth record in the PROC database, store the extracted text into its field
AB, and save it.

 Building macros that use objects 101

So let’s make a subroutine that does just that:

Sub CopyABField(recTo,recFrom)
 recTo.Edit
 recTo.Fields("AB")=recFrom.Fields("AB")
 recTo.Save
 End Sub

We need to get those Record objects from somewhere, of course. We start by
getting the Records object that represents the current selection in EMAIL, and the
same for PROC:

Set recsEMAIL=Windows("EMAIL").Records
Set recsPROC=Windows("PROC").Records

Then we store the record count in a variable, for convenience, and take the
opportunity to check that the records counts of both databases are the same:

nRecs=recsEMAIL.Count
If recsPROC.Count<>nRecs Then
 Halt "The record counts don’t match"
 End If

Finally we loop through the records and process each one:

For pos=1 To nRecs
 CopyABField recsPROC(pos),recsEMAIL(pos)
 Next

And that’s it. The original 17-line macro has been reduced to 14 lines, but more
importantly it’s far faster because it all happens behind the scenes. It’s also easier
to understand and modify: it took several readings of the original macro for us to be
certain that it was copying from EMAIL to PROC and not the other way round; and if
we ever wanted to copy two fields instead of one, that would require an extra nine
lines in the original macro but only one line in the revised one that uses objects.

Like all programming, this macro represents an investment. If you are only doing
something once, then the original inefficient version may actually be your best bet:
because you know it works and you can always go out to lunch while it’s processing
your large database. If, on the other hand, this is a process that you will be going
through once a week, then it is well worth investing the time in going all the way to
the Records version and getting good performance and a reliable macro that will be
easy to modify or expand later.

This check wasn’t in the
recorded macro but it’s a

good safety feature.

 102

Using a second database as a lookup table
Page 61 described how a user with multiple shops wanted to be able to select a
shop from a drop-down list and fill in a number of fields based on his selection.

Let’s assume that the field used for the selection is called SCODE and that the fields
to be filled in are called SNAME, SADDR, and STEL. The separate database that
lists the shops is already open in a window called “Shop Addresses”, and for
simplicity we’ll assume that the field names are the same in both databases,
although they don’t have to be.

shopcode=Fields("SCODE")
Set recs=Windows("Shop Addresses").Database.AllRecords
Set recs=recs.Select("SCODE",shopcode)
If recs.Count<>1 Then Halt "Invalid shop code!"
Fields("SNAME,SADDR,STEL")=recs(1).Fields("SNAME,SADDR,STEL")

1. The macro extracts the shop code from the current record into shopcode.

2. It stores all the records in the Shop Addresses database in a variable called
recs and then reduces recs to just the records whose SCODE field matches
shopcode.

3. There should only be one record like this: if there are none, or if there is more
than one, then there is something wrong with either the shop code or the Shop
Addresses database, so the macro halts and reports an error.

4. The macro copies fields from the first (and only) record that it has selected into
the record that the user is currently editing.

Tiny lookup tables
Here is a version of the same macro for when there are only a few cases to be
covered. It doesn’t need a second database, but the macro will need to be modified
every time a new shop is opened.

Select Case Fields("SCODE")
 Case "BUD" : Fields("SNAME")="Budleigh Salterton"
 Case "CHIT" : Fields("SNAME")="Chitterne"
 Case "HOL" : Fields("SNAME")="Holcombe"
 Case Else : Halt "Invalid shop code!"
 End Select

If the SCODE field is
done as a drop-down

list, it will be impossible
for the user to enter an

invalid shop code.

We’ve used just one field
here, to make the
example shorter.

If you have a whole
batch of records to

process at once, see
page 106 for a faster
way of doing lookup

tables.

 Building macros that use objects 103

Using a second database as a thesaurus
This macro was used in a database of accidents. All the contributory factors to each
accident needed to be listed in a singe field, and codes were assigned to every
possible factor so that it would be easy to analyse the date. There were too many
codes for the users to remember them perfectly, and check boxes were not an
option – again, because of the number of codes: the check boxes would have taken
up too much space on the screen.

The solution was to maintain a second “thesaurus” database that listed what codes
were allowed and gave enough explanatory information for the user to know which
codes to choose. The basic instructions, as given to the users, were:

1. Go to the field that you want to enter codes in, and press Ctrl + L.

2. Cardbox will list all possible codes for the field you are using, and will then
pause. Tag the ones you want, then press F5 to continue.

3. Your chosen codes will be typed into the field.

Here is the macro that did all this. We assume that the thesaurus database is open
in a window called “Thesaurus”. The thesaurus database has three main fields:
FIELD identifies which field in the main database was being referred to, CODE gives
the code to be typed into that field, and EXPLANATION gives the user an
explanation of what exactly this code means and when to use it.

windowname=ActiveWindow.Name
fieldname=ActiveFieldName
Activate "Thesaurus"
SelectionLevel=0
ClearTagged
Select "FIELD",fieldname
If RecordCount=0 Then
 Activate windowname
 Halt "Field " & fieldname & " has no thesaurus entries."
 End If
Pause "Tag the terms you want to use, then press F5"
Set recs=Database.TaggedRecords
Activate windowname
For Each rec In recs
 TypeText rec.Fields("CODE") & " "
 Next

1. The macro notes the name of the active window and the active field within that
window.

Tools > Keyboard was
used to program Ctrl + L

to play this macro.

 104

2. The macro switches to the Thesaurus window. The next few commands will be
sent to that window.

3. The macro clears all tags, resets the selection to Level 0 and selects just the
records that relate to the field the user was editing when he started the macro.

4. The macro pauses, with a message.

5. The user now goes through the selected records and tags the ones he wants.
He could also make selections among the records, if that made finding the right
ones easier; as long as all desired records end up being tagged.

6. The user continues the macro.

7. The macro stores a Records object containing the tagged records into the
variable recs.

8. The macro switches back to the original database (its name was noted at the
beginning of the macro).

9. The macro looks through each of the tagged records in recs. For each record,
it types the contents of the CODE field into Cardbox (just as if it was typed
directly by the user) and types a space after each one so that the codes are kept
separate.

If you want to adapt this macro for your own use, and you only have one field that
should have thesaurus codes attached, then you don’t need a field called FIELD in
the thesaurus database and you can remove all references to fieldname from the
macro.

Advanced techniques

Using temporary fields
It can sometimes be useful to create a temporary field that doesn’t add anything to
the information that is already in your records but simply formats it in a different way.
Here’s an example:

Suppose that you have a list of names and addresses and want to sort it into
alphabetical order using the same rules as British telephone directories. These say,
among other things, that all forms of the “Mac” prefix (Mac, Mc, M’) are sorted as if
they were spelt “Mac”. Similarly, “St” is expanded into “Saint”.

To deal with this, create a separate field, which we’ll call NFS (“Name For Sorting”).
The idea of NFS is that it should contain a version of the person’s name that has
been transformed so that if you get Cardbox to sort your records using the NFS field,
they will come out in the exact sequence you want. For instance, if the name is
“M’Turk” then NFS will have to contain “MacTurk”; if it is “St John” then NFS must

 Advanced techniques 105

contain “Saint John”. (NFS will never be printed out: its only purpose is to make
sorting produce the result that you want).

Obviously you don’t want to have to fill in all the NFS fields by hand: this is tedious
and error-prone. So create a macro that looks at the person’s real name and
transforms it into its NFS form. Most of the time this will simply mean copying the
name into NFS, unchanged; but the macro will check for and transform the “Mac”
and “Saint” prefixes, and it can do any other changes you want – you can even
program it to turn “8” into “Eight” if that’s what the users of the printed list will expect
and if you have the patience to do the programming.

Once the macro has been written, printing your address list in the right order is a
simple three-step process:

1. Run the macro to fill in the NFS field for every record.

2. Sort the records into order, using the NFS field.

3. Print out the records in an appropriate format.

The “Needs Change” flag
Many of the techniques we’ve shown you involve calculating fields from other fields:
either arithmetically, or by looking things up in another database, or by transforming
the data programmatically. These things take time, and if you have a huge
database then it will be a great waste of time to repeat these calculations when only
a handful of records may have changed since the last time you processed them.

There is a simple general way round this problem:

1. Create an indexed field called (say) CHANGED, and set up a Default Value
validator that writes “Y” into this field whenever the record is saved.

2. In the macro that performs calculations on all your records, select just those
records that have “Y” in CHANGED, and process them, then empty the
CHANGED field just before saving the record, like this:

For rec In Database.AllRecords.Select("CHANGED","Y")
 rec.Edit
 ‘ Perform other processing on the record ‘rec’
 rec.Fields("CHANGED")=""
 rec.Save
 Next

The Save method of the
Record object doesn’t
activate validators, so

your Default Value
validator won’t

put “Y” into CHANGED
when the macro

saves the record.

 106

Making lookup faster
One Cardbox user regularly imports trade statistics from a corporate system and
uses Cardbox to process them. This processing includes looking at a country code
and filling in country names and other details on the basis of that code. We’ve
already shown you how to do this sort of thing, but the snag here is that there could
be a million records in the database; and even though Cardbox is fast, a million
database searches will take up a lot of time.

The key to overcoming this problem is that although there may be a million records
there certainly aren’t a million countries. Assuming that the country code is indexed,
here are two ways of making things faster.

Using ListIndex
Use the ListIndex method to extract a list of all the country codes that are indexed in
this database. Use Split to split the list into an array in VBScript and then, for each
country code:

1. Select the records for that country code.

2. Look up the data for that country code in the reference database and store them
in VBScript variables.

3. Loop through your selected records and fill in the relevant fields using the data
that you have stored in your variables.

This is faster because the search in the reference database is done only once for
each country code and not once for each record in the big database.

See the example with
shops on page 102.

Instead of ListIndex and
Split, you could use

ListIndexToFile to write
the codes to a file, and

then read the codes from
that file and process

them one at a time. This
would make more sense

if you had a very large
number of codes.

 Advanced techniques 107

Using Exclude
Here is the outline of an alternative approach. We assume that the country code is
stored in a field called CC, and we’ve invented a few other field names so that you
can see how the whole thing would work.

Set recs=Records
Set recsRef=Windows("Country Data").Database.AllRecords
While recs.Count>0
 ccode=recs(1).Fields("CC")
 Set fldsFound=recsRef.Select("CC",ccode)(1).Fields
 cname=fldsFound("CN") : cdata=fldsFound("CD")
 Set recsToProcess=recs.Select("CC",ccode)
 If recsToProcess.Count=0 Then Halt
 For Each rec In recsToProcess
 rec.Edit : flds=rec.Fields
 flds("CN")=cname : flds("CD")=cdata
 rec.Save
 Next
 Set recs=recs.Exclude("CC",ccode)
 Wend

1. The variable recs contains the records that haven’t been processed so far. In
this example the macro processes all records in the current selection. You could
process all records in the database using Database.AllRecords, or you could
follow the “Needs Change” example on page 105 to reduce the number of
records you need to process.

2. The macro stores a reference to the lookup table in recsRef to reduce the
number of times that the table has to be retrieved.

3. The macro looks at the first record in recs and selects matching records from
the lookup table. There should be exactly one record: if there are more then it
will use the first record; if there are none then the macro will halt with an error.

4. The macro extracts the values it needs from the lookup table.

5. Now the macro selects all records in recs that have the same CC value as the
first one in the selection, and processes all those records to insert the data into
them.

6. Finally, the macro removes from recs all the records with this CC value: in other
words, all the ones it has just processed. The whole procedure repeats itself as
long as there are records remaining in recs.

As always with macros that use objects, you’ll see virtually nothing happening on the
screen while this macro is running.

Part Eight
The Cardbox object model

A list of all Cardbox objects, with a summary of their

interrelations, methods, and properties.

Applications: p.113
Application: p.113
Databases: p.128
Database: p.128

Fields: p.124
Field: p.125

FieldDefinitions: p.130
FieldDefinition: p.130

HistoryWindow: p.114
Images: p.126
Image: p.127

Records: p.121
Record: p.122

SharedPicture: p.127
Windows: p.115
Window: p.116

 Built-in methods and properties 111

The lists given here tell you what the methods and properties of each object type
are, but they don’t give any details of the way that they are to be used. To get more
information, you have two choices:

• Look up the relevant Help Point and follow the links to a full specification in the
help file.

• Or, for methods that correspond to commands, press the Record button, perform
the command yourself, and then look at what the macro recorder has recorded
for you.

Built-in methods and properties
Some methods and properties are built in to the macro system. You don’t need an
explicit object reference to use them. They are accessible only from macros running
within Cardbox: you can’t use them from an external program.

Properties

SafetyLevel The safety level of the current macro. In some restricted cases
you can modify this property as well as retrieving it: see
“Safety Levels” on page 9.

StatusText The text shown in the Cardbox status bar.

StatusPosition The length of the blue progress bar in the Cardbox status bar:
StatusPosition=0 indicates zero length and
StatusPosition=StatusRange indicates that the entire
progress bar is blue.

StatusRange If this is zero then the progress bar in the Cardbox status bar
contains a moving block; if it is non-zero then it contains a
blue bar whose length is controlled by StatusPosition.

StatusAutomatic If you set this to True, StatusRange reflects the number of
records in the current selection and StatusPosition reflects
the current record position.

CommandLine When you program a keystroke, toolbar button, etc to play a
macro, you can include a “command line” along with the
macro name. This property reflects the command line that
was included and your macro can examine it to decide what
action to take.

Help Point 737.

 112

Scrap(n) Scrap(1) to Scrap(100) are 100 temporary storage
locations that you can use to store data. The values stored
here will persist until this copy of Cardbox is closed, so you
can use them to communicate information between one macro
and another.

Methods

Halt Terminates the macro, optionally displaying a message.

Pause Pauses the macro, optionally displaying a message, and
waits for the user to restart it.

Play, PlayText Plays a macro and waits for it to complete. Play identifies
the macro by name and PlayText explicitly gives the text of
the macro to be played.

Launch Opens an external program or document.

Run Opens an external program and waits for the program to
terminate before continuing the macro.

Sleep Does nothing for a specified length of time. This can be
useful when driving external programs that require a pause
between commands (eg. some types of fax software).

WriteLog Writes a line to Cardbox’s debug log. This can be useful
when you are developing or testing a macro and trying to
see exactly what happens when.

Dial Dials a given telephone number. This depends on suitable
hardware being installed on your computer along with an
appropriate telephone dialler program that supports the
Simple TAPI interface. (Such a program is built in to
Windows XP).

Connection Creates and returns a Connection object (see page 131).

GetMailExchangers Given the domain name part of an email address (the part
after the @ sign) returns an array containing a list of domain
names that are ready to receive email for that address.
Requires Windows XP.

DateFromCardbox Converts a date in one of the textual date formats
understood by Cardbox to VBScript’s built-in Date type.
See “Regional Settings” on page 35.

DateToCardbox Converts a value of VBScript’s built-in Date type to one of
the textual date formats understood by Cardbox.

 The Applications object 113

NumberFromCardbox Converts a value from string to number type. See “Regional
Settings” on page 34.

NumberToCardbox Converts a value from number to string type. See page 34.

The Applications object
The Applications object is a collection of Application objects representing all the
copies of Cardbox that are currently running on your computer.

This is a very specialised object and we cannot imagine you ever needing to use it
from a macro. We have provided it in case you want to write a separate program
that looks at the running copies of Cardbox and chooses which one to connect to.

The Application object
The Application object represents a copy of Cardbox that is currently running. Its
methods and properties let you do things such as resizing the Cardbox window, and
it is also the starting point for getting objects that refer to database windows and the
databases and records themselves.

If you are running a macro within Cardbox then you won’t often need the Application
object, because most of the properties it provides are accessible to macros directly;
but if you are driving Cardbox from an external program then the Application object
is important because it is the first object that you get hold of when navigating
through the Cardbox object hierarchy.

Getting an Application object
In macros, Application will give you the application object directly.

With external programs, you will need to use CreateObject or GetObject to get
hold of an Application object. The exact syntax depends on the programming
language and on whether you are trying to refer to a copy of Cardbox that is already
running or trying to start a new copy of Cardbox: see page 89.

All Cardbox objects have an Application property that gives you the Application
object that they belong to: this is present for completeness and you wouldn’t
normally need to use it.

Help Point 720.

Help Point 721 gives full
details of how to get and

use an Application object
and includes links to

articles on each property
and method.

See also page 62.

 114

Properties
The following properties are read/write: you can both set them and retrieve them.

Left, Top, Width,
Height

The position and size of the main Cardbox window. You
can’t change these values when the window is maximised.

WindowState The window’s state (maximised, minimised, or normal).

Caption The window’s caption.

Visible This is True if the Cardbox window is visible (which it
normally is) or False if it is invisible.

ClipboardText The text currently in the Windows Clipboard.

The following properties are read-only: you cannot change them.

Context The current context of the Cardbox user interface: editing
records, dialog box open, etc.

Name, Build,
BuildNumber

Information about this version of the Cardbox program.

MachineName Identification of the computer that this copy of Cardbox is
running on.

Workspace The filename of the workspace file.

Object properties
The following properties give access to other Cardbox objects. When you use them
in a macro, there is no need to prefix them with Application because Cardbox will
automatically understand that they refer to the Application object.

Windows A Windows object that is a collection of all the database windows
that are currently open in this copy of Cardbox.

ActiveWindow A Window object that refers to the currently active database
window within Cardbox.

Databases A Databases object that is a collection of all the databases that
are currently open in this copy of Cardbox.

There is no ActiveDatabase property. If you need the Database
object for the currently active database, use ActiveWindow to
get a Window object for the active window and then use the
window’s Database property to get the Database object.

HistoryWindow A special HistoryWindow object that lets you control the position
and visibility of the History window. For details of its methods
and properties, see Help Point 722.

 The Windows object 115

Methods

Activate Activates the Cardbox window. You won’t normally
need it in a macro because when you are running a
macro, Cardbox is already the active application; but it
can be useful when you are driving Cardbox from an
external program.

Play Plays a named macro.

PlayText Plays specified text as a macro.

SaveRegistryOptions Saves Cardbox’s registry options to a file, like Tools >
Management > Save Cardbox Registry Settings.

DateFromCardbox,
DateToCardbox

See page 35. These Cardbox functions are provided as
methods of the Application object so that external
programs can access them

The Windows object
The Windows object is a collection of Window objects representing database
windows within Cardbox. It can represent:

• All the windows open within Cardbox, if the Windows object was obtained from
the Windows property of an Application object.

• All the windows open on a particular database, if the Windows object was
obtained from the Windows property of a Database object.

The Windows object is mostly used to collect together Window objects, but it has a
few methods of its own, of which the most important is OpenFile, which opens a
Cardbox database in a new window.

Properties
The Windows object has the standard properties shared by all collections:

Count The number of Window objects in this collection.

Item(n) The nth Window object in this collection.

Item("name") The Window object for the window whose caption is name.

Help Point 723 gives full
details of how to get and

use a Windows object and
includes links to articles

on each property and
method.

See also page 63.

 116

Methods

Cascade This cascades the database windows within a Cardbox window, just
like Window > Cascade.

Tile This tiles the database windows within a Cardbox window, just like
Window > Tile.

OpenFile This opens a Cardbox database in a new window. It returns a Window
object that refers to the new window.

The Window object
The Window object represents a database window within Cardbox.

• The Windows object lets you get a Window object for any database window at
all.

• The ActiveWindow property of the Application object represents the currently
active database window.

The Window object has an enormous number of methods and properties, because
almost any menu command that you enter into Cardbox is effectively an action
applied to the currently active window. For example, going to the 10th record in the
current selection of the currently active window is done by the command:

Application.ActiveWindow.GoToRecord 10

Because so many commands refer to the active window (especially when you record
them in macros), the macro system lets you abbreviate this sort of command to:

GoToRecord 10

In the macro system, this applies to all properties and methods of the Window
object: if you leave out any object reference, the active window is assumed.

When you are programming from another language you don’t have access to this
short cut, and you will need to get hold of a Window object explicitly if you want to
use its methods and properties.

Properties

Left, Top, Width,
Height

The position and size of the database window. You can’t
change these values when the window is maximised.

WindowState The window’s state (maximised, minimised, or normal).

Caption The window’s caption.

Help Point 724 gives full
details of how to get and

use a Window object and
includes links to articles

on each property and
method.

See also page 63.

Exception: you have to
say ActiveWindow.Left

and ActiveWindow.Select,
because Left and Select

are keywords built into
Visual Basic.

 The Window object 117

Visible This is True if the window is visible (which it normally is) or
False if it is invisible.

Index This window’s position in Cardbox’s Window menu.

ZOrder The position of this database window relative to other
database windows within Cardbox. The currently active
window has ZOrder=1; the window underneath it (possibly
completely obscured by it) has ZOrder=2; and so on. You
can’t change the value of ZOrder but you can move a
window to the top by using the Activate method to activate
the window.

Name The name (caption) of the window.

Caption An exact synonym for Name.

WindowNumber If several windows have the same name, Cardbox gives
them suffixes: #1, #2, and so on. WindowNumber gives the
number in the suffix.

Format The name of the format this window is using. The native
format is identified by a zero-length string "". To change to a
different format, set this property to the name of the new
format: for example, Format="REPORT" will change this
window to use the format called REPORT (if such a format
exists).

ExtraText Sets the display mode for extra text: main record only, extra
text only, or main record and extra text together.

HighlightMatches Checks or sets the mode for highlighting matching words
after a search.

Sequence The sequence into which records have been sorted. You
can sort records by setting the Sequence property (see Help
Point 752) or you can use the SetSequence method, which
has some additional options.

SelectionLevel The number of active levels of selection (this is the Level
value reported in the status bar at the bottom of the Cardbox
window). Setting this property to less than its current value
makes Cardbox undo levels of selection until it gets to the
level you have specified. You can’t explicitly set it to more
than its current value.

Reducing SelectionLevel by 1 is such a convenient
operation (it is equivalent to Search > Undo) that a method
exists for doing it: UndoOneSelectionLevel.

 118

StepBrowseMode This is True if step browse mode (from the Search > Browse
menu) is active and False if it isn’t. You can cancel step
browse mode by setting this property to False.

Editing This is True if this window is currently editing a record or
False if it isn’t. You can use this so that your macro can
take different actions in the two cases.

Often you may find yourself with a macro that can only work
when Cardbox is editing (or conversely, when Cardbox is
not editing). In that case it is good practice to check the
editing mode and terminate at once if it is wrong: you can
use the Editing property for this, or the CheckEditing
method can do it for you in a single step.

RecordPosition The position in the current selection. To move to a different
record you can use the FirstRecord, LastRecord
NextRecord and GoToRecord methods, or you can simply
give a new value to RecordPosition.

RecordCount The number of records in the current selection. This gives
the same value as Records.Count but without the extra
work of creating a temporary Records object.

ActiveFieldName When you are editing a record, this is the name of the field
you are currently in. This gives the same value as
ActiveField.Name but without the extra work of creating a
temporary Field object.

Object properties
The following properties give access to other Cardbox objects.

Database A Database object that represents the database that is open in
this window.

Records A Records object that is a collection of all the records in the
current selection.

ActiveRecord A Record object that represents the current record in the current
selection.

ActiveField When you are editing a record, this is a Field object representing
the field that you are in.

 The Window object 119

Methods

Activate Activates this window.

Close Closes this window.

SetSequence Sorts the current selection into a given
sequence.

UndoOneLevelOfSelection Undoes one or more levels of selection.

CheckEditing Checks that the current editing mode (True or
False) matches the one you specify, and
terminates the macro at once if it doesn’t.

FirstRecord, NextRecord,
LastRecord, GoToRecord

These methods move to different record
positions in the current selection.

Print Prints a record or records, like File > Print.

Records.WriteToFile Export records to a file, like File > Export. Note
that WriteToFile is actually a method of the
Records object, which is why the reference to
the Records property is needed.

ReadFromFile Imports records from a file, like File > Import >
From File.

ReadFromCardbox Imports records from another window, like File
> Import > From Cardbox.

DeleteRecord Deletes the current record, like Edit > Delete
Record.

UndeleteRecord Undoes the most recent deletion, like Edit >
Undo Deletion.

RemoveDeletedRecords Removes deleted records from the current
selection, like View > Remove Deleted
Records.

AddRecord Adds a new record and starts editing it, like
Edit > New Record.

EditRecord Starts editing the current record, like Edit >
Edit Record.

DuplicateRecord Duplicates the current record, like Edit >
Duplicate Record.

SaveRecord Saves the record you were editing, like File >
Save Record.

 120

DoNotSaveRecord Stops editing but does not save the record,
like File > Quit Without Saving.

GoToField When editing, moves to a different field.

TypeText When editing, types text into the field.

TypeTextFromFile When editing, reads text from a file and types
it into the field.

Command When editing, performs various editing
keystrokes.

Find, FindNext, ReplaceAll,
ReplaceHere

When editing, implements find-and-replace
commands.

SetOption When editing, selects a particular option in a
check box, radio button, or drop-down list field.

Search and selection methods
These following methods are the equivalent of commands in the Search menu:
Select, SelectKept, SelectTagged, SelectData, SelectRecordNumber,
SelectFromWindow, SelectRelational, SelectAlso, SelectAlsoKept,
SelectAlsoTagged, SelectAlsoData, SelectAlsoRecordNumber,
SelectAlsoFromWindow, SelectAlsoRelational, Exclude, ExcludeKept,
ExcludeTagged, ExcludeData, ExcludeRecordNumber,
ExcludeFromWindow, ExcludeRelational, ExcludeAlso,
ExcludeAlsoKept, ExcludeAlsoTagged, ExcludeAlsoData,
ExcludeAlsoRecordNumber, ExcludeAlsoFromWindow,
ExcludeAlsoRelational, Include, IncludeKept, IncludeTagged,
IncludeFromWindow, IncludeRelational, StepBrowse, StepBrowseKept,
StepBrowseTagged, StepBrowseData, StepBrowseRecordNumber,
StepBrowseFromWindow, StepBrowseRelational.

You can also build up a selection within a Records object and then combine it into
the current selection using:

SelectFromRecords, SelectAlsoFromRecords, ExcludeFromRecords,
ExcludeAlsoFromRecords, IncludeFromRecords, StepBrowseFromRecords

or you can use SetFromRecords to replace the window’s current selection with the
records you have placed into your Records object.

 The Records object 121

The Records object
The Records object is a collection of Record objects representing records in a
database. It can represent:

• All the records in a database.

• The tagged records in a database.

• The records in the current selection in a window.

It is also possible to build Records objects that have no direct relation to anything
that is visible on the Cardbox screen, and this is an important technique when you
are writing macros or programs to do searches independently of the user’s view of
Cardbox: such programming avoids distracting flickering on the screen and can also
be much faster.

Properties
The Records object has the standard properties shared by all collections:

Count The number of records in this collection.

Item(n) The nth record in this collection. This is a Record object.

Object properties
The following property gives access to other Cardbox objects.

Database A Database object that represents the database that contains these
records.

Methods

Add Adds a Record object to this collection.

Remove Removes a Record object to this collection.

Contains Checks whether a Record object is contained in this collection.

Find Finds the position of a Record object in this collection.

Keep Saves this collection as a kept selection, like Search > Keep >
Keep.

Tag Tags or untags the records in this collection.

Print Prints records, like File > Print.

WriteToFile Exports records to a file, like File > Export.

Help Point 725 gives full
details of how to get and

use a Records object and
includes links to articles

on each property and
method.

See also page 64

 122

WriteToString This behaves like WriteToFile but returns the exported text
as a string instead of writing it to a file.

ListIndexToFile This is the equivalent of pressing the Preview and Count
button when making a selection: it finds matching index terms
and writes the list to a file. If you want to preview all index
entries and not just those that match a given collection of
records, use the ListIndexToFile method of the Database
object (p.129).

ListIndex This behaves like ListIndexToFile but returns the list of
matching index terms as a string instead of writing it to a file.

Deduplicate Marks potential duplicate records, like Tools > Deduplicate.

Search and selection methods
Select, SelectKept, SelectTagged, SelectData, SelectRecordNumber,
SelectFromWindow, SelectFromRecords, SelectRelational, Exclude,
ExcludeKept, ExcludeTagged, ExcludeData, ExcludeRecordNumber,
ExcludeFromWindow, ExcludeFromRecords, ExcludeRelational, Include,
IncludeKept, IncludeTagged, IncludeFromWindow, IncludeFromRecords,
IncludeRelational

The search and selection methods of the Window object change the visible selection
in the object. The search and selection methods of the Records object don’t do this:
instead, they return a new Records object that contains the result of the selection,
and the original Records object is left unchanged. No change occurs to the screen
display, which means that these commands don’t disturb the user and they don’t
waste time by needlessly updating the screen.

The Record object
The Record object represents a record in a database. You can use it to tag, untag,
delete and undelete records, and to get to other objects that access the record’s
content. You can get hold of a Record object in various ways:

• The ActiveRecord property of a window.

• The Item property of a Records object.

• The NewRecord method of the Database object creates a Record object for a
new, blank record.

• The DuplicateRecord method of the Record object creates a Record object for
a new, separate record identical to the original.

Help Point 726 gives full
details of how to get and
use a Record object and
includes links to articles

on each property and
method.

See also page 67.

 The Record object 123

Properties

Deleted To delete a record, set this property to True.

Tagged This property tells you whether a record is tagged. You can tag or
untag the record by setting this property to True or False.

UserEditing If the user is editing this record, this property will be True.

Editing If this macro is editing this record, this property will be True.

TextFormat You can use this to set the initial value of the TextFormat property
of all Field objects retrieved from this Fields object. See page 124.

Object properties
The following properties give access to other Cardbox objects.

Database A Database object that represents the database that contains this
record.

Fields A Fields object that contains Field objects for all the fields in this
record, This is the way in which you access the actual text within a
record.

Images An Images object that contains Image objects for all the images in this
record.

Methods

Edit Starts editing this record.

StartEditing Identical to Edit. It is here because some programming
languages give a special meaning to the word Edit, which
prevents it from being used as a method.

Duplicate Creates a Record object representing a new record whose content
is identical to the current record.

Preload Tells Cardbox to retrieve a list of fields because the macro will be
asking for them soon. This can make macros faster if they are
dealing with a remote server: see Help Point 753.

 124

The Fields object
The Fields object represents the fields in a record. You can get hold of a Fields
object as follows:

• The Fields property of a Record object.

• The keyword Fields on its own in a macro will get the Fields object for the
current record in the currently active window.

Properties
The Fields object has the standard properties shared by all collections:

Count The number of Field objects in this collection.

Item(n) The nth Field object in this collection. This is not
normally a very useful way of accessing individual Field
objects (unless you plan to access them all) because
there is no guarantee as to the sequence in which the
fields will be listed.

Item("name") The Field object for the field whose name is name.

Item("name1,name2,…") A compound Field object that represents several fields
combined. This is more complicated to manipulate than
a Field object for a single field, but it can be faster if you
are retrieving or setting many fields in a database on a
remote server. See Help Point 753.

TextFormat You can use this to set the initial value of the
TextFormat property of all Field objects retrieved from
this Fields object. See page 124.

Method

Preload Tells Cardbox to retrieve a list of fields because the macro will be asking
for them soon. This can make macros faster if they are dealing with a
remote server: see Help Point 753.

Help Point 727 gives full
details of how to get and

use a Fields object and
includes links to articles

on each property and
method.

 The Field object 125

The Field object
The Field object represents a single field in a single record. You can use it to
retrieve or set the text of a field. The only way to get hold of a Field object is through
the Fields collection or, when the user is editing a record, through the ActiveField
property of the Window object.

A special form of the Field object can represent more than one field at once. This is
used when you need to handle many fields as fast as possible: see Help Point 753.

Properties

Name The name of this field.

Text The text of this field. In many cases you don’t need to mention
this property explicitly: see the examples on page 68.

TextFormat This controls whether the Text property contains the bare text of
the field, with no index information, or whether it also includes
markers to show which words are indexed and which aren’t: see
page 70.

TextLength The length of the text in this field, ignoring any index markers
inserted by TextFormat.

TextNoIndex The text of this field, with no markers inserted even if
TextFormat has requested them.

TextWithIndex The text of this field, with markers inserted to show which words
are indexed and which aren’t. This is an alternative to using
TextFormat.

Object properties
The following property gives access to other Cardbox objects.

Definition A FieldDefinition object that tells you the field’s name and index
mode.

Help Point 728 gives full
details of how to get and

use a Field object and
includes links to articles

on each property and
method.

See also page 68.

 126

The Images object
The Images object represents the images in a record. You can get hold of an
Images object as follows:

• The Images property of a Record object.

• The keyword Images on its own in a macro will get the Images object for the
current record in the currently active window.

Properties
The Images object has the standard properties shared by all collections:

Count The number of Image objects in this collection.

Item(n) The nth Image object in this collection.

Methods

Add Adds an image to this collection.

ReadFromFile Reads an image or images from a file.

Paste Pastes an image from the Clipboard.

MoveFromTo Rearranges the images in the list.

Help Point 729 gives full
details of how to get and

use an Images object and
includes links to articles

on each property and
method.

See also page 73.

 The Image object 127

The Image object
The Image object represents a single image in a single record. The only way to get
hold of an Image object is through the Images collection.

Properties

Width, Height The width and height of this
image, in pixels.

IsNew, Type, NewWidth, NewHeight, Rotate,
Compress, ResolutionX, ResolutionY,
NewResolutionX, NewResolutionY,
UpdateDisplayTextFormat

These properties apply only to a
newly added image before it is
saved for the first time. They let
you control how Cardbox
processes and compresses the
image.

Object properties
The following property gives access to other objects.

Picture This property gives the visible image itself in a format that can be
passed to other programs: eg. Visual Basic or Microsoft Office. The
value of this property is a SharedPicture object: see Help Point 731.

Methods

CopyToClipboard Copies this image to the Clipboard.

WriteToFile Writes this image to a file.

Help Point 730 gives full
details of how to get and
use an Image object and
includes links to articles

on each property and
method.

See also page 74.

 128

The Databases object
The Databases object represents the databases that are currently open in this copy
of Cardbox. You can get hold of a Databases object by retrieving the Databases
property of the Application object.

Properties
The Databases object has the standard properties shared by all collections:

Count The number of Database objects in this collection.

Item(n) The nth Database object in this collection.

Item("name") The Database object for the database whose name is
name.

The Database object
The Database object represents a Cardbox database as a whole. You can use it to
retrieve objects or perform operations that are relevant to the whole database. You
can get hold of a Database object:

• Through the Item property of a Records object.

• Through the Database property of a Window object.

Properties

FullName The name of this database.

Profile The name of the current profile.

ShortUserName The short user name associated with the current profile.

LongUserName The long user name associated with the current profile.

Object properties
The following properties give access to other Cardbox objects.

Windows A Windows object that contains all windows that are using
this database. Often there will be only one such window, and
you can use Windows(1) to get its Window object.

FieldDefinitions A FieldDefinitions object that contains the definitions of all
the fields in the database.

Help Point 732 gives full
details of how to get and
use a Databases object

and includes links to
articles on each property

and method.
See also page 74.

Help Point 733 gives full
details of how to get and

use a Database object
and includes links to

articles on each property
and method.

See also page 75.

 The Database object 129

AllRecords A Records object that contains all the records in the
database.

NoRecords A Records object that contains nothing at all. This is a useful
starting point when building up selections programmatically.

TaggedRecords A Records object that contains all the tagged records in the
database.

Methods

SetProfile Selects a user profile.

ClearKept Deletes a kept selection.

ClearTagged Untags all records in the database.

NewRecord Creates a new record in the database and returns its Record
object.

ReadFromFile Imports records from a file, like File > Import > From File.

ReadFromCardbox Imports records from another window, like File > Import >
From Cardbox.

Download Downloads a database or format file from the server.

Upload Uploads a database or format file to the server.

ListIndexToFile This is the equivalent of pressing the Preview button when
making a selection: it finds matching index terms and writes
the list to a file. To emulate the Preview-and-Count button, use
the ListIndexToFile property of the Records object (p.122).

ListIndex This behaves like ListIndexToFile but returns the list of
matching index terms as a string instead of writing it to a file.

NextIndexTerm Finds the first, last, next or previous, indexed term for a field.

 130

The FieldDefinitions object
The FieldDefinitions object represents the definitions of the fields in a database.
You can get hold of a FieldDefinitions object from the FieldDefinitions property
of a Database object.

Properties
The Fields object has the standard properties shared by all collections:

Count The number of FieldDefinition objects in this collection.

Item(n) The nth FieldDefinition object in this collection.

Item("name") The FieldDefinition object for the field whose name is
name.

The FieldDefinition object
The FieldDefinition object represents the definition of a single field. You can get
hold of it from:

• An item in the FieldDefinitions object.

• The Definition property of the Field object.

Properties

Name The name of the field.

Description The description of the field, entered when you designed the
format file.

IndexMode The index mode of the field: 0 = None, 1 = Manual, 2 =
Automatic, 3 = All.

Index The position of this field in the FieldDefinitions collection: the
first field has Index=1.

InternalNumber Cardbox's internal field number for this field. This is only
needed in specialist applications, such as when you are
handling data in the Cardbox internal dump format.

Help Point 734 gives full
details of how to get and

use a FieldDefinitions
object and includes links

to articles on each
property and method.

Help Point 735 gives full
details of how to get and

use a FieldDefinition
object and includes links

to articles on each
property and method.

 The Connection object 131

The Connection object
The Connection object represents a TCP/IP connection to an external computer.
This is a technical object that is used for advanced purposes, such as sending email
by direct use of the SMTP protocol.

Getting an Application object
In macros, Connection will create and return a Connection object.

This is the only way to get a Connection object. If you are using another
programming language to drive Cardbox and want to set up a TCP/IP connection,
you should use the TCP/IP facilities offered by that language.

Properties

Timeout This property sets a time limit in milliseconds for the Connect,
ReadLine, and WriteLine methods. If one of these methods takes
longer than the limit, it is interrupted. The default value of this property
is -1, meaning no limit.

TimedOut This read-only property is True if the last ReadLine was interrupted
because it exceeded the time limit.

UTF8 The default value of this property is False, meaning that text will be
sent and received using the Windows character set. If you set it to
True, the UTF-8 Unicode character set will be used instead.

Methods

Connect Connects to a given IP address and port number.

ReadLine Reads a line of text from the connection.

WriteLine Writes a line of text to the connection.

Help Point 736 gives full
details of how to get and
use a Connection object

and includes links to
articles on each property

and method.

 132

Index of methods and properties
This list shows all methods and properties of Cardbox objects, in alphabetical order.
It doesn’t show any details of the way that they are to be used: to get more
information, you have two choices:

• Look up Help Point 700 and follow the links to a full specification in the help file.
• Or, for methods that correspond to commands, press the Record button, perform

the command yourself, and then look at what the macro recorder has recorded
for you.

Note: All methods and properties marked with an asterisk (*) can be used directly
from macros without any object reference. They then refer to the active window, the
active record, etc.

Method or property Object Description
Activate Application Activates the Cardbox window.
Activate Window* Activates this window.
ActiveField Window* The field you are currently editing.
ActiveFieldName Window* The field you are currently editing.
ActiveRecord Window* The current record in this window.
ActiveWindow Application* The currently active database

window.
Add Images Adds an image to the list.
Add Records Adds a record to this Records

object.
AddRecord Window* Adds a new record and starts

editing it.
AllRecords Database Gives the Records object that

contains all the records in this
database.

Application All Gives you the Application object.
AutoPopup HistoryWindow Checks or sets whether the History

window automatically appears
when a selection is changed.

Help Point 700 is an
electronic version of this
list, with links to articles

that describe each
property and method

in detail.

 Index of methods and properties 133

Method or property Object Description
Build Application Information about this version of the

Cardbox program.

BuildNumber Application Information about this version of the
Cardbox program.

Caption Application The caption of the Cardbox
window.

Cascade Windows Arranges the database windows in
a cascade.

CheckEditing Window* Checks whether this window is
currently editing a record.

ClearKept Database Deletes one of the kept selections
for this database.

ClearTagged Database* Untags all records in this database.

ClipboardText Application* Checks or sets the text currently in
the Windows Clipboard.

Close Window* Closes this window.
Command Window* When editing: this method performs

a keystroke or a menu command.
CommandLine (macros) The command line passed to the

macro when it was started.

Compress Image Controls how a newly added image
is to be compressed.

Contains Records Checks whether a record is in this
Records object.

Context Application The current context of the Cardbox
user interface.

CopyToClipboard Image Copies the image to the Windows
Clipboard.

Count All collections The number of objects in this
collection.

Database Record The database that contains this
record.

 134

Method or property Object Description
Database Records The database that contains these

records.
Database Window* The database that is open in this

window.
Databases Application* The databases that are currently

open.
DateFromCardbox Application* Converts a date from Cardbox

format.
DateToCardbox Application* Converts a date to Cardbox format.

Deduplicate Records Searches for potential duplicate
records and tags them.

Definition Field The definition of this field (name,
index mode, etc).

Deleted Record Allows you to delete or undelete
this record.

DeleteRecord Window* Deletes a record.
Description FieldDefinition The description of the field.
Dial (macros) Dials a telephone number.

DoNotSaveRecord Window* When editing: this method quits
without saving the changes.

Download Database Downloads a database file or
format file from the server.

Duplicate Record Creates a new record with content
identical to this one.

DuplicateRecord Window* Adds a new record based on the
current record and starts editing it.

Edit Record Edits this record.
Editing Record Checks whether you are editing this

record.

Editing Window* Checks whether this window is
currently editing a record.

 Index of methods and properties 135

Method or property Object Description
EditRecord Window* Starts editing a record.
Exclude... Records Exclude records from within this

Records object and return a new
Records object containing the
remaining records.

Exclude... Window* These methods perform search
commands within this window.

ExtraText Window* Checks or sets the display mode for
extra text.

FieldDefinitions Database The definition of all the fields in this
database.

Fields Record* The collection of fields within this
record.

Find Records Finds a record in this Records
object.

Find Window* Finds text in a record you are
editing.

FindNext Window* Finds the next occurrence of the
search text.

FirstRecord Window* Moves among the records in this
window.

Format Window* Checks or sets the current format in
this window.

FullName Database The name of this database.
GetMailExchangers (macros) Finds the computers that accept

mail for a given email address.

GoToField Window* When editing: this method moves to
a different field.

GoToRecord Window* Moves among the records in this
window.

Halt (macros) Terminates the macro.

 136

Method or property Object Description
Height Application,

HistoryWindow,
Window*

Check or set the Cardbox window's
size.

Height Image The size of this image, in pixels.
HighlightMatches Window* Checks or sets the mode for

highlighting matching words after a
search.

HistoryWindow Application* The object that represents the
History window in Cardbox.

Images Record* The collection of images within this
record.

Include... Records Select records from the database
as a whole and return a new
Records object that contains those
records plus all the others within
the original Records object.

Include... Window* These methods perform search
commands within this window.

Index FieldDefinition The position of this definition in the
FieldDefinitions collection (the first
definition has Index=1).

Index Window* This window's position in the
Window menu.

IndexMode FieldDefinition The index mode of the field.
InternalNumber FieldDefinition Cardbox's internal field number for

this field. This is only needed in
specialist applications, such as
when you are handling data in the
Cardbox internal dump format.

IsNew Image Says whether the image has been
newly loaded.

Item("name") Databases,
FieldDefinitions,
Fields, Windows

The item whose name is "name".

 Index of methods and properties 137

Method or property Object Description
Item(n) All collections The nth object in this collection.
Keep Records Keeps the selection represented by

this object (equivalent to the
Search, Keep, Keep command).

LastRecord Window* Moves among the records in this
window.

Launch (macros) Runs an external program or opens
a document.

Left Application,
HistoryWindow,
Window*

Check or set this window's position.

ListIndex,
ListIndexToFile

Database,
Records

Lists index terms in the database.

LongUserName Database The long user name associated
with the current profile.

MachineName Application Identification of the computer that
this copy of Cardbox is running on.

MoveFromTo Images Rearranges the order in which
images are stored.

Name Application Information about this version of the
Cardbox program.

Name Field,
FieldDefinition

The name of the field.

Name Window* The caption of this window.
NewHeight Image Controls how a newly added image

is to be rescaled.
NewRecord Database Creates a new record in this

database.
NewResolutionX,
NewResolutionY

Image Controls the resolution of a newly
added image.

NewWidth Image Controls how a newly added image
is to be rescaled.

 138

Method or property Object Description
NextIndexTerm Database Finds the first, last, next or

previous, indexed term for a field.
NextRecord Window* Moves among the records in this

window.
NoRecords Database Creates a blank Records object

which you can then add records to.

NumberFromCardbox (macros) Converts a number from Cardbox
format.

NumberToCardbox (macros) Converts a number to Cardbox
format.

OpenFile Windows* Opens a database file.
Paste Images Pastes an image from the

Clipboard.
Pause (macros) Pauses the macro.

Picture Image The visible image itself, in a form
that can be passed to other
programs (eg. Visual Basic or
Microsoft Office).

Play, PlayText Application* Plays a macro.
Preload Fields, Record This optional method tells Cardbox

to retrieve some database fields
because you will be using them
later.

Preload Image This optional method tells Cardbox
to start loading the image because
you will later be using the Picture
property or the CopyToClipboard or
WriteToFile method.

Print Records Prints records.
Print Window* Prints records.
Profile Database The name of the current user

profile.

 Index of methods and properties 139

Method or property Object Description
ReadFromCardbox Database or

Window*
Reads records from a Cardbox
database

ReadFromFile Database or
Window*

Reads records from an external file

ReadFromFile Images Reads an image from an external
file.

RecordCount Window* How many records there are in the
current selection.

RecordPosition Window* Where you are in the current
selection.

Records Window* The current selection of records in
this window.

Remove Records Removes a record from this
Records object.

RemoveDeletedRecords Window* Equivalent to the menu command
View > Remove Deleted Records.

ReplaceAll Window* Finds and replaces all occurrences
of a specified text.

ReplaceHere Window* Replaces one occurrence of a
specified text.

ResolutionX
ResolutionY

Image The resolution of the image, in dots
per inch.

Rotate Image Controls how a newly added image
is to be rotated.

Run (macros) Runs an external program or opens
a document.

SafetyLevel (macros) The current safety level of this
macro.

Save Record Saves an edited or newly added
record.

SaveRecord Window* When editing: this method saves
the record.

 140

Method or property Object Description
SaveRegistryOptions Application Saves Cardbox's section of the

Windows Registry to a file.
Scrap (macros) Temporary storage values external

to the macro.

Select... Records Select records from within this
Records object and return a new
Records object containing those
records.

Select... Window* These methods perform search
commands within this window.

SelectionLevel Window* The current level of selection.
Sequence Window* Checks or sets the current

sequence of records in this window.

SetFromRecords Window* Set the current selection to the
records listed in a Records object.

SetOption Window* When editing: sets a value in a
check box, radio button, or drop-
down list.

SetProfile Database Select a user profile.
SetSequence Window* Sets the current sequence of

records in this window.
ShortUserName Database The short user name associated

with the current profile.
Sleep (macros) Suspends the macro for a given

time.

SlotNumber Record (this property is obsolete)
StartEditing Record Edits this record.
Status... (macros) These properties control the status

display while a macro is running.
StepBrowseMode Window* Checks or cancels step browse

mode for this window.
StepBrowse... Window* These methods start the step

browse mode for this window.

 Index of methods and properties 141

Method or property Object Description
Tag Records Tags or untags a group of records.
Tagged Record Allows you to tag or untag this

record or check its tagged status.
TaggedRecords Database Gives the Records object that

contains all the tagged records in
this database.

Text Field The text of this field.
Text HistoryWindow The text in the History window.
TextLength Field The length of the text in this field.
TextFormat Field Controls the format in which the

Text property represents the text of
the field.

TextFormat Fields Sets the default value of the
TextFormat property of any Field
object that you create.

TextFormat Record Sets the default value of the
TextFormat property of any Fields
object that you create.

TextNoIndex,
TextWithIndex

Field Versions of the Text property
without, and with, index markers.

Tile Windows Tiles the database windows so they
can all be seen at once.

Timeout Connection A time limit for the Connect and
ReadLine methods.

Top Application,
HistoryWindow,
Window*

Check or set this window's position.

Type Image The type of the image (Document
or Picture).

TypeText Window* Types text into Cardbox at the
current cursor position.

TypeTextFromFile Window* Type text into Cardbox from a text
file.

 142

Method or property Object Description
UndeleteRecord Window* Undeletes the last record that was

deleted in this window.
UndoOneSelectionLevel Window* Undoes one or more levels of

selection.
UpdateDisplay Image Redisplays the image after its

properties have been changed.
Upload Database Uploads a database file or format

file to the server.
UserEditing Record Checks whether the user is editing

this record.
UTF8 Connection Controls the character encoding

used on this connection.

Visible Application Checks or sets the Cardbox
window's visibility.

Visible HistoryWindow Checks or sets the History
window's visibility.

Visible Window* Checks or sets the window's
visibility.

Width Application,
HistoryWindow,
Window*

Check or set the window's size.

Width Image The size of this image, in pixels.
WindowNumber Window* If several windows share the same

name, which of them this one is.
Windows Application* The database windows that are

currently open.
Windows Database The windows that have this

database open.
WindowState Application,

Window*
Checks or sets this window's state
(maximised, iconic, or normal).

Workspace Application The name of the workspace file.

 Index of methods and properties 143

Method or property Object Description
WriteLog (macros) Writes debugging information to the

Cardbox log.

WriteToFile Image Writes the image to a file on disk.

WriteToFile Records Writes selected records to a file on
disk.

WriteToString Records Like WriteToFile, but returns the
written records as a string.

ZOrder Window* Where this window is relative to
others.

 Index 145

You can find a map of the Cardbox object model on pages 58 and 110. The master index of methods
and properties starts on page 132. A list of all examples and sample macros is on page 97.

A

Application object, 62, 113
Applications object, 113
Arrays, 32

B
Bibliography, 55
Books, 55

C
Collections, 37
Comments, 51
Connection object, 131
Constants, 52
Conversions

dates and strings, 35
numbers and strings, 33

D
Data types

arrays, 32
dates, 31
numbers, 27
objects, 36
strings, 28

Database object, 75, 128
Databases object, 74, 128
Dates, 31

and strings, 35
Debugging, 55
Do / Loop, 43

E
Error handling, 54
Examples of macros, 97

F

Field object, 68, 125
FieldDefinition object, 130
FieldDefinitions object, 130
Fields object, 68, 124
For / Next, 41
For Each / Next, 42
Functions, 47

H
Halt, 41

I
If / Then / Else, 44
Image object, 74, 127
Images object, 73, 126
Indentation, 51
InputBox, 50

J
Join, 33

L
LBound, 32
Loop. See Do / Loop

 146 Index

M
Methods, 36, See also Objects

built-in, 111
MsgBox, 49, 56

N
Next. See For / Next
Numbers, 27

O

Objects, 36
Application, 62, 113
Applications, 113
Connection, 131
Database, 75, 128
Databases, 74, 128
Field, 68, 125
FieldDefinition, 130
FieldDefinitions, 130
Fields, 68, 124
Image, 74, 127
Images, 73, 126
Record, 67, 122
Records, 64, 121
storing in variables, 40
Window, 63, 116
Windows, 63, 115

On Error, 54
Option Explicit, 53

P
Properties, 37, See also Objects

built-in, 111

R

Record object, 67, 122

Records object, 64, 121
Regional settings

date format, 35
number format, 34

S
Sample macros, 97
Scrap variables, 40
Select Case, 45
Set, 40
Split, 32
Statements

combining in one line, 52
splitting across lines, 52

Strings, 28
splitting and joining, 32

Sub / End Sub, 45
Subroutines, 45

U
UBound, 32
Until, 43, See Do / Loop

V
Variables, 38

in subroutines, 48
object references, 40
scrap variables, 40

W
While / Wend, 43
Window object, 63, 116
Windows object, 63, 115
WriteLog, 56

